HYDROGEOLOGIC ASSESSMENT REPORT 6095 Bodega Ave Petaluma, CA 94952 APN 022-200-002 PREPARED FOR: Mr. Michael Wright Petaluma, California 94952 July 18, 2018 (Revised September 25, 2018) PREPARED BY: # HURVITZ ENVIRONMENTAL SERVICES INC. 105 Morris Street, Suite 188 Sebastopol, California 95472 Lee S. Hurvitz, PG #7573 CHG #1015 Certified Hydrogeologist PROJECT No. 5021.01 July 18, 2018 Mr. Wright 6095 Bodega Avenue Petaluma, California 94952 RE: Hydrogeologic Assessment Report 6095 Bodega Ave, Petaluma, CA 94952 APN: 022-200-002 Hurvitz Environmental Project No. 5021.01 Dear Mr. Wright: Hurvitz Environmental Services, Inc. (HES) is pleased to submit this Hydrogeologic Assessment Report (HAR) for the above referenced property. HES prepared this HAR in accordance with the Sonoma County Permit and Resource Management Department (Permit Sonoma) Policy and Procedure Number 8-1-14 and General Plan Policy WR-2e. The purpose of this HAR was to evaluate the aquifer conditions at the site, which is located within a Zone 2 groundwater availability area, and to determine if the proposed groundwater usage will cause overdraft conditions, well interference or impact nearby stream-flow. The quantity of groundwater to be used for the project and within the Cumulative Impact Area compared to the quantity of available groundwater indicates that pumping for the Project is unlikely to result in significant declines in groundwater resources over time. Based on the findings of this report, pumping and groundwater extraction at the Project well will not significantly impact neighboring wells or near-site stream flow conditions. In addition, based on the relative distance to the coastal areas, the depth of the site well and the proposed water usage rates, salt water intrusion is not considered to be a concern to this Assessment. We appreciate the opportunity to provide you with these services. Please do not hesitate to contact us at your convenience, should have any questions or comments regarding this report or our recommendations. Sincerely, **HURVITZ ENVIRONMENTAL SERVICES, INC** Lee S. Hurvitz, PG# 7573 CHG #1015 Certified Hydrogeologist # TABLE OF CONTENTS | 1.0 INTRODUCTION AND SCOPE OF SERVICES | 1 | |--|----| | 2.0 SITE DESCRIPTION | 2 | | 2.1 USGS 7.5 MINUTE QUADRANGLE MAP | 2 | | 2.2 HISTORICAL AERIAL PHOTOGRAPHY | 2 | | 2.3 NEIGHBORING PROPERTIES | 3 | | 2.4 SITE DEVELOPMENT AND WATER USE | | | 3.0 CUMULATIVE IMPACT AREA | | | 3.1 GROUNDWATER USAGE IN CUMULATIVE IMPACT AREA | 7 | | 3.1.1 Domestic Water Use | | | 3.1.2 Pasture Land and Dairy Land | | | 3.1.3 Total Water Demand in Cumulative Impact Area | | | 4.0 HYDROGEOLOGICAL CONDITIONS | | | 4.1 PROJECT WATERSHED | 11 | | 4.2 GROUNDWATER RESOURCES | | | 4.3 DOMESTIC WELL INFORMATION | | | 4.3.1 Site Well Yield Test | 16 | | 5.0 WATER BALANCE INFORMATION | | | 5.1 GROUNDWATER STORAGE | 17 | | 5.2 PRECIPITATION | | | 5.3 GROUNDWATER RECHARGE | 17 | | 6.0 WATER QUALITY | 19 | | 7.0 POTENTIAL IMPACTS TO STREAMS AND NEIGHBORING WELLS | 21 | | 8.0 CONCLUSIONS | 22 | | 9.0 LIMITATIONS | 23 | # **FIGURES** PLATE 1 SITE LOCATION MAP PLATE 2 ASSESSORS PARCEL MAP PLATE 3 ENGINEERED SITE LAYOUT PLATE 4 USGS TOPOGRAPHIC MAP PLATE 5 SITE PLAN WITH CUMULATIVE IMPACT AREA PLATE 6A GEOLOGIC MAP PLATE 6B REGIONAL GEOLOGIC MAP PLATE 6C REGIONAL GEOLOGIC MAP KEY PLATE 7 PRECIPITATION MAP # **APPENDICES** APPENDIX A PHOTOGRAPHIC LOG APPENDIX B WEATHER DATA FROM WEATHERSPARK.COM APPENDIX C ENERGY EFFICIENCY IN CANNABIS GROWING APPENDIX D WELL COMPLETION LOGS APPENDIX E WELL YIELD TESTS APPENDIX F LABORATORY ANALYTICAL REPORTS APPENDIX G RADIUS OF INFLUENCE GRAPH # **TABLES** TABLE 1 ESTIMATED PROJECT WATER USE TABLE 2 ESTIMATED WATER USAGE IN CUMULATIVE IMPACT AREA TABLE 3 WELL INVENTORY #### 1.0 INTRODUCTION AND SCOPE OF SERVICES Mr. Michael Wright (the applicant) is applying to Sonoma County for approval to develop a 12,500 sqft mixed light cannabis cultivation within a 15,000 sqft greenhouse at the property located at 6095 Bodega Avenue, Petaluma, California (the site). The site is located within Sonoma County Groundwater Availability Class 2 – Major Natural Recharge Area¹. According to Sonoma County General Plan Policy WR-2e, development of property intending to use groundwater within Groundwater Availability Zone 2 does not typically require completion of a Hydrogeologic Assessment unless specifically requested by Permit Sonoma. Permit Sonoma requested a Hydrogeologic Assessment for this proposed development. On behalf of the applicant, Hurvitz Environmental Services (HES) conducted a Hydrogeologic Assessment for the site in accordance with the Permit Sonoma Procedures for Groundwater Analysis and Hydrogeologic Reports (Policy No. 8-1-14). Policy WR-2e states that procedures for proving adequate groundwater should consider groundwater overdraft, land subsidence, saltwater intrusion, and potential impacts to neighboring wells and nearby creeks. Therefore, this groundwater report includes the following elements: - Delineation of a Cumulative Impact Area. - Estimates of existing and future potential water uses within the Cumulative Impact Area. - Characterization of local hydrogeologic conditions within the site watershed and sub-basin. - Compilation of Well Completion Reports (drillers' logs) from the area. - Review of a recent Well Yield Test performed at an on-site well. - Estimates of annual groundwater storage and recharge relative to existing and proposed groundwater uses. - Assess potential for the project to create salt water intrusion. - Assess potential for well interference between the project well and neighboring wells and between the project well and nearby streams. ¹ Groundwater Availability Map, Sonoma County Permit and Resource Management Division, April 1, 2004 #### 2.0 SITE DESCRIPTION The site is located at 6095 Bodega Avenue, in an unincorporated, rural agricultural area of Sonoma County, approximately 6 miles west northwest of downtown Petaluma, California. (PLATE 1 – SITE LOCATION MAP). The Sonoma County Assessor's Office identified the site as Assessor's Parcel No. (APN) 022-200-002 (PLATE 2 – ASSESSORS PARCEL MAP). The 7.09-acre parcel is zoned as Land Extensive Agriculture (LEA-60). The site is also located in groundwater availability Zone 2 – Major Natural Recharge, and the site is located in the jurisdiction of the North Coast Regional Water Quality Control Board. The site is located outside of the Petaluma Valley Groundwater Basin, a State defined Priority Groundwater Basin. The site is located within the Sonoma County Petaluma Dairy Belt Area, where residential development is mostly associated with agricultural land use.² The property features a residence, garage and several small outbuildings. Most of the land is grassland with some trees and shrubs. A small drainage swale and two operating domestic water wells are located onsite. Site photographs are presented in **APPENDIX A**. # 2.1 USGS 7.5 MINUTE QUADRANGLE MAP HES reviewed the most recent United States Geological Survey (USGS) 7.5-minute Quadrangle Map, 2018 (**PLATE 3 – TOPOGRAPHIC MAP**)³. The site is a roughly square, 7.09-acre parcel, elongated 650 feet in the northwest to southeast direction and approximately 550 feet in the southwest to northeast direction. The site topography gently dips from the southeast corner where the elevation is approximately 210 feet above mean sea level (MSL) to northwest corner where the elevation is approximately 150 feet above MSL. A small unnamed ephemeral creek which is created from pond overflow on an adjacent parcel to the south, flows northwesterly across the property. A second unknown ephemeral creek is located proximate to the site along Bodega Avenue which eventually coalesces with Stemple Creek approximately 3 miles west of the site. Several properties near the site appear to utilize retention ponds for livestock and irrigation. #### 2.2 HISTORICAL AERIAL PHOTOGRAPHY HES reviewed aerial photographs from years 1993-2017 depicting the site and vicinity to obtain information about historical developments and other surficial features. 1993 satellite imagery depicts agricultural barns and pastures at the site and the surrounding areas. 2018 imagery presents the same level of development as 1993 imagery, indicating that the vicinity has not seen any significant increase in development since 1993. Overall much of the area has remained pasture and _ ² The Petaluma Dairy Belt Area Plan priorities are to 1) Preserve and enhance the agricultural resources and protect the agricultural industry in this area, 2) Preserve the area's scenic beauty, 3) Accommodate a variety of rural life styles, and 4) Encourage the development of an adequate transportation network which will accommodate proposed development and projected travel needs, and which will facilitate movement of agricultural products to the market place. ³ USGS The National Map: National Boundaries Dataset, National Elevation Dataset, Geographic Names Information System, National Hydrography Dataset, National Land Cover Database, National Structures Dataset, and National Transportation Dataset; U.S. Census Bureau - TIGER/Line; HERE Road Data | USGS The National Map: 3D Elevation Program. Data refreshed January 2018. | USGS TNM – National Hydrography Dataset. Data refreshed January 2018. dairy land with interspersed residential structures. #### 2.3 NEIGHBORING PROPERTIES The surrounding land uses are predominantly pasture land, dairy farms and rural residential developments. Tomales Bay and the Pacific Ocean are approximately 13 miles west and the mouth of the Petaluma River at San Pablo Bay is approximately 17 miles southeast of the site. The developed properties are serviced by private septic systems and groundwater wells. There is one retention pond located on a neighboring property 900 feet southeast of the site. Access to neighboring properties is provided
from Bodega Avenue and Middle Two Rock Road. ## 2.4 SITE DEVELOPMENT AND WATER USE On August 15, 2017, Permit Sonoma received a request for a use permit (UPC17-0018) from the project applicant with a proposal for 10,000 square feet of small mixed light cultivation as well as an onsite processing facility. We understand that the applicant will also be developing an additional 2,500 sq/ft within the 15,000 sq/ft greenhouse for early plant vegetation. On January 10, 2018, Permit Sonoma Responded to the use permit application and requested a hydrogeologic assessment among other things. On March 23, 2018, Permit Sonoma issued a well permit (WEL18-0110) for the installation of a new Class 1 water well on the property. The well was installed on June 12, 2018 and a subsequent 72-hour pump test was performed by Les Petersen Drilling between June 26 – June 30, 2018. The well construction details and the results of the well test are discussed in Sections 4.1 and 4.1.2, respectively. The site already has an existing domestic water well however the property owner intends to dedicate the new domestic well (Project well) to the proposed cannabis project. We understand that the applicant has planned to cultivate cannabis within a 15,000 sq/ft greenhouse located southwest of the residence. The approximate location of the proposed cultivation is shown on (**PLATE 4 – ENGINEERED SITE LAYOUT**). The newly installed onsite domestic well (project well), located approximately 150 feet from the cultivation area and approximately 990 from unnamed, intermediate creek, will provide water for the proposed cultivation project. The Well Completion Report indicates that the well was installed to a total depth of 300 feet below ground (bg) with a sanitary seal of 100 feet. The mixed light cultivation will consist of a total of approximately 3,000 plants within the 12,500 sq/ft cultivation area and includes all plants as they move through their life cycle from clones, to vegetative to flower stage. Water use has been estimated using the anticipated peak water use for the whole facility. The project plans do not involve any water diversions or imported water at this time. The estimated annual water use for the entire cultivation project is 514,487 gallons which is approximately 1.58 acre-feet of groundwater use per year. The applicant determined an estimate of 0.33 gallons of water per plant per day based on usage from previous experience. However, to be conservative, we have included in our final water use calculation an overall 10% exceedance of these water use estimates bringing the total usage to 0.363 gallons per day. Water will be utilized in a Pad evaporative cooling system for the greenhouses on the hottest days of the year. The Pad evaporative cooling system is only used to cool when the temperatures are above optimal growing levels. This would be greater than 85 degrees, during the peak times of the day. When outside temps are below 85 degrees, ambient outside air will be utilized for cooling, which means the Pad wall will not be being utilized. Pad evaporative cooling systems are self-regulating and only use as much water as is necessary. This is a highly efficient demand-based system. If only a slight amount of cooling is needed, only one exhaust fan will be used (pulling less air through the Pad, and hence less evaporation). As the demand increases so would the number of fans needed. Petaluma's climate is very temperate, due to the proximity to the ocean, keeping the temperature very stable. Attached is the Weather Data, from weatherspark.com, for Petaluma in **APPENDIX B**. The first data chart shows the average temperatures highs and lows throughout the year. The majority of the time the average temp is well below the 85-degrees set point for cooling. When it is needed it would only be for the hottest times of the day during the hottest months of the year. An alternative cooling measure utilized by indoor growers, but not greenhouse growers, is a full HVAC system. In **APPENDIX** C the Applicant has provided a document on power consumption (Energy Efficiency in Cannabis Growing), it is estimated that climate-controlled greenhouses use up to 70% less power than indoor cultivations. By using a modest amount of water on the hottest days to cool the greenhouses one can apparently avoid wasting a significant amount of power. The water use for the project is presented below: Mixed Light Greenhouse Water Use per Day = 0.363 gallons water x 3,000 plants x 365 days/year = 397,485 gallons/year Evaporative cooling = 250 gallons/hour x 4 hours/day for 3 months out of the year = 90,000 gallons/year # 487,485 gallons = 1.50 acre-feet/year = Total Annual Water Use for Cannabis Cultivation Using the Napa County Water Availability Guidance Document⁴ estimate of 15 gallons of water utilized per day per cultivation worker on site, we calculated the following additional water usage for the cultivation project: Annual Onsite Worker Water Use = 5 (average number of daily employees) x 15 gallons/day (daily employee water usage) x 365 days/year) = 27,375 gallons/year = 0.08 acre-feet/year = Total Annual Onsite Worker Water Use Thus, the total Annual Site Water Use for this proposed Cannabis Cultivation Project including worker use is 514,860 gallons per year or 1.58 acre-feet/year. The projects estimated water use is summarized on **TABLE 1**. The Applicant also plans to implement water conservation methods in the future as part of the proposed mixed light greenhouse cultivation project including the installation of a rainwater 4 ⁴ Water Availability Analysis (WAA) Guidance Document, Napa County, Adopted May 12, 2015. catchment system attached to the greenhouse building. The rainwater catchment system will capture rain from approximately 15,000 sq/ft of proposed roof structure and will be stored in onsite poly tanks totaling approximately 20,000-gallons. Based on the surface area available for rain capture and the annual rainfall in the area, we estimate the following amount of water could potentially be captured and utilized on-site. Rainwater capture area = 15,000 sq/ft (roof) / 43,560 SF/acre = 0.34-acre Annual Rainfall Capture Potential = 0.34-acre (rainwater capture area) x 2.3 feet (annual onsite precipitation⁵) = 0.8 acre-feet/year The greenhouse/indoor cultivation will operate through most of the winter and spring so the actual groundwater usage during those months could be significantly offset by the captured rainwater. Details on potential rainwater offset are also presented on **TABLE 1**. ⁵Sonoma County Mean Seasonal Precipitation in Flood Control Design Criteria manual: Plate No. B-3, Sonoma County Water Agency, Revised January 2005 TABLE 1 – ESTIMATED PROJECT WATER USAGE | Source | Jan | Feb | Mar | Apr | May | June | July | Aug | Sept | Oct | Nov | Dec | Total | |---|--------|--------|--------|--------|--------|--------|----------|--------|--------|--------|--------|--------|---------| | | | | | | | | Gallons- | | | | | | | | Mixed Light
Greenhouse | 33,124 | 33,124 | 33,123 | 33,124 | 33,124 | 33,123 | 33,124 | 33,124 | 33,124 | 33,123 | 33,124 | 33,124 | 397,485 | | Evaporative
Cooler | 0 | 0 | 0 | 0 | 0 | 0 | 30,000 | 30,000 | 30,000 | 0 | 0 | 0 | 90,000 | | Onsite
Workers | 2,281 | 2,281 | 2,282 | 2,281 | 2,281 | 2,282 | 2,281 | 2,281 | 2,281 | 2,282 | 2,281 | 2,281 | 27,375 | | TOTAL
USAGE | 35,405 | 35,405 | 35,405 | 35,405 | 35,405 | 35,405 | 65,405 | 65,405 | 65,405 | 35,405 | 35,405 | 35,405 | 514,860 | | Rainwater
Capture
Potential** | 48,278 | 52,105 | 37,053 | 15,782 | 8,529 | 1,569 | 0 | 784 | 1,960 | 13,919 | 32,446 | 48,278 | 260,703 | | TOTAL
Groundwater
Usage after
potential
rainwater
offset | 0 | 0 | 0 | 19,623 | 26,876 | 33,836 | 65,405 | 64,621 | 63,445 | 21,486 | 2,959 | 0 | 298,251 | The rainfall capture potential previously calculated in this Section of the Report may offset the site groundwater water usage by up to 0.80 acre-feet per year, approximately a 40% reduction. Considering this reduction, the net demand on groundwater at the site can be recalculated as: 1.58 acre-feet/year (Project groundwater usage) – 0.80 acre-feet/year (rain capture potential) ^{0.78} acre-feet/year = Annual Project Groundwater Usage after Rainwater Offset. #### 3.0 CUMULATIVE IMPACT AREA HES reviewed available water well records obtained from Permit Sonoma and California Department of Water Resources (DWR) and assessed information obtained from peer-reviewed scientific publications as referenced in this report to determine an appropriate Cumulative Impact Area for the site. HES delineated the Cumulative Impact Area based on known geologic, hydrologic and groundwater characteristics in the area. The total area of the Cumulative Impact Area is approximately 604-acres. Some properties within the Cumulative Impact Area extend outside of the Cumulative Impact Area. HES identified 30 properties in the Cumulative Impact Area including the site. The Cumulative Impact Area includes the entire site and all or portions of the other 29 properties (PLATE 5- SITE PLAN - CUMULATIVE IMPACT AREA). The property sizes included in the Cumulative Impact Area range from 2.44-acres to 394.88-acres with an average size of approximately 8.0 acres. A total of 27 of the 30 Cumulative Impact Area properties are developed with residences or single, family homes. The county identifies one of the 27 residential properties as a Dairy with Residence (APN 022-090-002, 5730 Bodega Avenue), also known as The Witt Home Ranch. The remaining parcels are identified by the county assessors use code as Rural Residential, Pasture with Residence, or Pasture. #### 3.1 GROUNDWATER USAGE IN CUMULATIVE IMPACT AREA Based on available information including a Google Earth February 2018 aerial photograph⁶, HES estimated the land use acreage within the 604-acre Cumulative Impact Area
as follows: 50 acres Drainage and Wooded Land 120 acres Residential use including houses and landscaping (~ 4 acres per residential) Current Pasture Livestock Land 150 acres 284 acres Future Potential Livestock Land The wooded land within the Cumulative Impact Area is situated primarily along the drainage feature bordering Bodega Avenue, providing limited but valued privacy between properties and the road so further reduction of existing wooded land may not be feasible or pursued. #### 3.1.1 Domestic Water Use According to the USGS, the average person within the Santa Rosa Plain Watershed uses 0.19 acrefeet/year for domestic purposes⁷. In addition, the United States Census Bureau reported in 2010 that the average household in Sonoma County has 2.55 residents⁸. Therefore, for the purpose of this assessment we used a conservative number of three (3) residents per primary residence within the Cumulative Impact Area and assumed that each person uses 0.19 acre-feet of groundwater per year. We also assumed that $\frac{1}{2}$ of the properties are developed with 2^{nd} units and that 2 residents, on average, occupy the 2nd Units. Therefore, with 27 developed properties identified, we estimate that 109 residents currently live within the defined Cumulative Impact Area. With this data we ⁶ Details derived from Google Earth aerial photograph, dated May 2018. ⁷ Santa Rosa Plain Groundwater Management Plan, Sonoma County Water Agency, 2014 ⁸ http://www.bayareacensus.ca.gov/counties/SonomaCounty.html calculated the following domestic water usage. 27 Properties x 3 Residents/Primary Dwelling x 0.19 acre-feet/year = 15.39 acre-feet/ year 14 2nd Units x 2 Residents/2nd Unit x 0.19 acre-feet/year = 5.32 acre-feet/year So, 15.39 acre-feet/year (Primary Dwelling) + 5.32 acre-feet/year (2^{nd} Unit) = 20.71 acre-feet/year ## **Current Annual Domestic Water Use in Cumulative Impact Area = 20.71 acre-feet/year** This method for calculating domestic water demand indicates the estimated domestic water use within the Cumulative Impact Area is 20.71 acre-feet/year. HES notes that water conservation measures by the general public has increased which has effectively reduced domestic annual water consumption in this area over the last 10 years that included 4 drought years. Future domestic water demand within the Cumulative Impact Area assumes that 3 additional properties will be developed with residential homes including landscaping and all 30 properties will be developed with 2nd units. Using the methods described above Future Domestic Water Demand is calculated below. 3 properties x 3 Residents/Primary Dwelling x 0.19 acre-feet/year = 1.71 acre-feet/year 16 properties x 2 Residents/2nd Unit x 0.19 acre-feet/year = 6.08 acre-feet/year So, 1.71 acre-feet/year (3 currently undeveloped properties) + 6.08 acre-feet/year (16 potential 2^{nd} Units) + 20.71 acre-feet/year (Existing Residential Demand) = # Future Annual Domestic Water Use in Cumulative Impact Area = 26.79 acre-feet ## 3.1.2 Pasture Land and Dairy Land The Witt Home Ranch (APN 022-090-002) covers approximately 150-acres of the cumulative impact area and is located just north of the site. Average domestic water use for properties within the Cumulative Impact Area was estimated to be less than 1 acre-foot per year however, the water use for ranch/dairy farming is likely much more significant. HES searched available sources for information regarding water use at farms raising livestock, most notably grazing dairy cows. As a general rule we found that water demand per cow was estimated to be 40 to 50 gallons of water per cow per day. However, A study conducted by the University of Michigan Extension monitored water usage at a commercial dairy farm in Ohio using 13 water meters at key locations for two years. The average milk production on this farm was 80 pounds per cow per day. There were 854-1005 total cows on the farm during the study period. Over the two study years, the average drinking water per cow (both milking and dry cows) was 23.6 gallons and the average waste water (water used for cleaning) was 6.3 gallons/day for an average total water use of 29.9 gallons per cow per day which is significantly lower than the 40 to 50 gallons per cow per day commonly cited in the literature.⁹ As noted in Section 3.1of this Report, HES estimated that there are currently approximately 150 acres of current pasture/dairy land within the Cumulative Impact Area and there is an additional 284 acres of pasture/dairy land that theoretically could be developed in the future. HES conservatively assumed that all pasture/dairy land areas found within the Cumulative Impact Area are irrigated by pond water and that 2 cows per acre is the sustainable amount allowed. Therefore, HES estimated the current water demand for pasture/dairy land within the Cumulative Impact Area as follows: 150 (Acres of Current Pasture-Dairy Land) x 2 (Sustainable Number of Cows/Acre) x 30 (gallons of water/cow/day) x 365 (days/year) = 3,285,000 gallons/year (3,285,000 gallons/year) / (325,851 gallons/acre-feet) = ## **Current Pasture/Dairy Water Use in Cumulative Impact Area = 10.08 acre-feet/year** Future pasture/dairy land water demand within the Cumulative Impact Area assumes that the additional 284-Acres will be developed with Dairy or other livestock. Using the methods described above Future Annual Pasture-Dairy Land Water Demand is calculated as follows. 284 (Acres of Potential Pasture Dairy Land) x 2 (Sustainable Number of Cow/Acre) x 30 (gallons of water/cow/day) x 365 (days/year) = 6,219,600 gallons/year (6,219,600 gallons/per year) / (325,851 gallons/acre-foot) = ## Potential Additional Pasture Land in Cumulative Impact Area =19.09 acre-feet/year So, 10.08 (Current Pasture Land) + 19.09 (Potential Additional Pasture Land) = # <u>Future Potential Pasture/Dairy Land Water Use in Cumulative Impact Area = 29.17 acrefeet/year</u> ## 3.1.3 Total Water Demand in Cumulative Impact Area Based on the conservative assumptions discussed above, HES estimated Current Annual Groundwater Demand (in acre-feet/year) for the Cumulative Impact Area (excluding the Project): 20.71 acre-feet/year (Current Domestic in CIA, including site) + 10.08 acre-feet/year (Pasture Livestock) = **Current Groundwater Demand in Cumulative Impact Area = 30.79 acre-feet/year** ⁹ http://msue.anr.msu.edu/news/water use on dairy farms Based on the conservative assumptions discussed above, HES estimated Future Potential Annual Groundwater Demand for the Cumulative Impact Area as follows: 26.79 acre-feet/year (Potential Domestic) + 29.17 acre-feet/year (Potential Pasture Livestock) = # <u>Future Potential Groundwater Demand in Cumulative Impact Area = 55.96 acrefeet/year</u> The Project's water demand of 1.58 acre-feet/year increases the Cumulative Impact Area current total water demand (30.79 acre-feet/year) by 5% and the future total water demand (55.96 acre-feet/year) by 2.8%. A breakdown of water usage within the Cumulative Impact Area is presented below on **TABLE 2**. TABLE 2- ESTIMATED WATER USAGE IN CUMULATIVE IMPACT AREA | UNITS | Water Use
Type | Projected
Water Use
per Day
Average | Projected
Water Use
per Day
Peak | Projected
Water use
per Month
Average | Projected
Water Use
per Month
Peak | Projected
Water Use
Annual | |---|--|--|---|--|---|--| | 27developed
residential
properties,14
with 2 nd units
(109 residents
site included) | Existing
Domestic Water | 18,489
gallons
0.06 acre-
feet | 18,489
gallons
0.06 acre-
feet | 562,364
gallons
1.73 acre-
feet | 562,364
gallons
1.73 acre-
feet | 6,748,374
gallons
20.71 acre-feet | | 3 undeveloped residential properties and 16 potential 2 nd Units (41 residents) | Future Potential
Domestic Water | 5,428
gallons
0.02 acre-
feet | 5,428
gallons
0.02 acre-
feet | 165,098
gallons
0.51 acre-
feet | 165,098
gallons
0.51 acre-
feet | 1,981,174
gallons
6.08 acre-feet | | 150-acres of
existing
Pasture Land | Existing Ranch
Water | 9,000
gallons
0.028 acre-
feet | 9,000
gallons
0.028 acre-
feet | 273,750
gallons
0.84 acre-
feet | 273,750
gallons
0.84 acre-
feet | 3,285,000
gallons
10.08 acre-feet | | 284-acres of potential Pasture Land | Future Potential
Ranch Water | 17,040
gallons
0.052 acre-
feet | 17,040
gallons
0.052 acre-
feet | 518,300
gallons
1.59 acre-
feet | 518,300
gallons
1.59 acre-
feet | 6,219,600
gallons
19.09 acre-feet | | Site
Project | Irrigation,
Evaporative
Cooling and
Workers | 1,411
gallons
0.004 acre-
feet | 2,180
gallons
0.007 acre-
feet | 42,905
gallons
0.13 acre-
feet | 65,405
gallons
0.20 acre-
feet | 514,860
gallons
1.58 acre-feet | | Total Water
Usage
Estimate | Existing and
Proposed
Water Demand | 51,368
gallons
0.16 acre-
feet | 52,101
gallons
0.16 acre-
feet | 1,562,417
gallons
4.79 acre-
feet | 1,584,917
gallons
4.86 acre-
feet | 18,749,008
gallons
57.54 acre-feet | | | | | | | | | #### 4.0 HYDROGEOLOGICAL CONDITIONS The site is located outside and west of the Petaluma Valley and within the northwest trending structural province of the Coast Ranges of northern California. The regional structure consists primarily of northwest-trending folds and a few major faults, the most prominent of which is the San Andreas fault, a right-lateral fault, about 12 miles west of
the site. The Petaluma Valley occupies a northwest-trending structural depression in the southern part of the Coast Ranges of northern California. This depression divides the Mendocino Range on the west from the Mayacamas and Sonoma Mountains on the east. West of the southern end of Petaluma Valley are the Marin Mountains, in which Burdell Mountain, immediately adjacent to the Valley, rises to an altitude of 1,560 feet. According to the Geologic Map of the Petaluma 7.5 Quadrangle, the site is underlain by the Miocene aged Wilson Grove Formation (Formerly Merced Formation), a light gray to light yellow-brown marine sandstone. The sandstone is fine grained, well sorted, and massive to poorly bedded and locally contains thin lenses of pebble conglomerate. Exposed near ground surface to the south and east and underlaying the Wilson Grove formation is the Franciscan Assemblage (Jurassic-Cretaceous), a tectonic mixture consisting predominantly of a matrix of sheared graywacke and shale and to a lesser extent serpentinite enclosing blocks of less sheared graywacke and graywacke interbedded with shale. The unit is characterized by hard, resistant tectonic blocks of chert, greenstone, and exotic high-grade metamorphic rocks. Native sediment and rock underlying the site is thought to consist of light brown clayey to silty fine-grained sand (Wilson Grove Formation), light brown sandstone, and dark serpentinite (Franciscan Complex). The Wilson Grove Formation, which is a marine unit of late Miocene to Pliocene age, is the principal aquifer in western Sonoma County. According to Special Report 120 "Geology for Planning in Sonoma County¹¹ the site is listed as being part of the Plio-Pleistocene aged Merced Formation consisting of fine-grained sandstone and local minor coarse-grained grit and tuff breccia (**PLATE 6A - GEOLOGIC MAP DETAIL**). Other geologic formations identified within close proximity of the site include the Franciscan Assemblage and quaternary aged alluvial deposits (**PLATE 6B - REGIONAL GEOLOGIC MAP**). ## 4.1 PROJECT WATERSHED According to www.ecoatlas.com¹² the project site is located within the San Pablo Bay Hydrologic Region Cataloging Unit (HUC-8), The Petaluma River-Frontal San Pablo Bay Estuary Watershed Region (HUC-10), and the 180500050303 sub-watershed (HUC-12) also identified as the Estero de San Antonio/ Stemple Creek Watershed. The Stemple Creek Watershed is entirely underlain by the Franciscan Formation, a hard, metamorphic rock with frequent and deep fractures. This rock forms the Coast Range of California. In the watershed, Franciscan rocks are exposed at the surface along a north south axis that runs from Deer Valley ¹⁰ GEOLOGIC MAP OF THE PETALUMA 7.5' QUADRANGLE SONOMA AND MARIN COUNTIES, CALIFORNIA: A DIGITAL DATABASE VERSION 1.0, California Department of Conservation California Geological Survey, 2002. 11 ¹¹ Special Report 120, "Geology for Planning in Sonoma County, California Department of Mines and Geology, 1980. ¹² www.ecoatlas.org, EcoAtlas has been developed through funding from the US Environmental Protection Agency and the California State Water Resources Control Board. (near Walker Road), through Two Rock (where the resistant material gives the community its name), to the south of Spring Hill Road. The ends of this axis form the highest points of the watershed, 715 feet elevation on the north, and 853 feet on the south. Water flows into the Franciscan Formation and travels along its many fractures. Groundwater discharge occurs when a slope or stream channel cuts across the fractures; thus, the "springs" of Spring Hill (south of the site). Because water flows through the Franciscan formation relatively slowly, it is a good source of summer baseflow in the steam, as well as perennial springs that water small tributaries. A closer look at the geology of the upper watershed further confirms this similarity. The Franciscan formation is exposed at the points noted above. The remainder of the watershed is overlain by the Wilson Grove formation, which extends north and east from the Stemple Creek basin and includes the areas around Valley Ford, Freestone, Sebastopol and Graton. The formation is a moderately consolidated sandstone conglomerate that weathers into soft rounded terrain, with wide valley bottoms filled with Quaternary (Recent) alluvium. The bedrock weathers into well-drained sandy loam soil which supports the orchards and vineyards of Sebastopol, and the early potato farms of the coastal valleys. The Wilson Grove formation stores a large amount of groundwater, especially where the sandstone is massive (thick/deep) and not excessively interbedded with shale lenses. However, the formation is a poor source of stream baseflow during the summer. Groundwater in the Wilson Grove rocks is not confined to fractures as it is in the Franciscan Formation. Therefore, water flows more evenly downslope. Unless it meets a geologic intrusion that forces flow to the surface, the water tends to stay below ground. However, the near-surface flow that occurs in the Wilson Grove formation and the valley alluvium can support lush riparian vegetation. In such habitat, when geologic conditions do cause surface flow, the water is relatively cool and of high quality. The drainage of the upper watershed, unlike the lower portion in Marin County, is arranged in a dendritic (branch-like) pattern. The north and south branches, as noted above, rise from the Franciscan Formation and provide perennial streamflow where they meet near the entrance of the Two Rock Coast Guard facility. The middle branch, which would normally be considered the main stem of the creek, is a small channel with intermittent flow in a broad valley. The drainage divide at the hydraulically most distant point in the basin is near Stony Point Road. This divide has a relatively low elevation, and is physically on such a gentle slope that it is difficult to locate on topographic maps or in the field. This head of the watershed is relatively new geologically. Before the Pleistocene (3 million years ago), the headwaters of Stemple Creek were in the Sonoma Mountains to the east. The watershed area was at least double its current size. (Higgins 1952) The larger basin area and greater flow would account for the broad alluvial valley in which the current Stemple Creek channel is clearly underfit. It would also explain why what appears to be the main stem is no longer the major source of baseflow to the stream 13. _ ¹³ http://www.krisweb.com/biblio/stemple mcrcd prunuskeetal 1994 wep.pdf ## 4.2 GROUNDWATER RESOURCES Groundwater resources have long played a significant role in the development, growth and sustainability of the Petaluma Valley and surrounding areas. These groundwater resources are relied upon to varying degrees by rural and urban residents, agricultural users, golf courses and other businesses and also support the rich ecosystems present in Petaluma Valley. Assuring sustainable groundwater supplies in the Petaluma Valley is critical to the environmental health and economic vitality of the Basin.¹⁴ A comprehensive study of the Petaluma Valley Basin was last completed in 1982 by the Department of Water Resources. In recognition of the importance of local groundwater resources, in 2014, the Sonoma County Water Agency and City of Petaluma partnered with the U.S. Geological Survey to conduct a three-year groundwater study of the Petaluma Valley, which is currently nearing completion. The study will culminate in a report by 2018 consisting of the following major sections: - Hydrogeologic characterization - Data collection and interpretation (primarily water quality) - Numerical groundwater flow model. Groundwater is the primary source of supply for domestic and agricultural use by rural property owners in the Basin and while urban water supply to the City of Petaluma is primarily imported Russian River surface water, groundwater is a vital supplemental and backup source of water for the City of Petaluma. Estimates of total groundwater use in Petaluma Valley, along with the water budget are being developed as part of the USGS study. Five faults or fault systems are documented within Petaluma Valley which may have an influence on groundwater movement and water quality. Aquifers are generally discontinuous vertically and horizontally, creating partitions of variable water quality and aquifer properties. - ¹⁴ http://sonomacountygroundwater.org/pv-basin/ ## 4.3 DOMESTIC WELL INFORMATION HES performed a domestic well search through the Department of Water Resources and Permit Sonoma to identify Well Completion Reports within a ¾ mile radius of the site. Through this research, HES identified 16 domestic well logs for 11 properties within the Cumulative Impact Area, including the site (TABLE 3). Seven of the 16 well logs are listed as being located on the subject property. However, we understand that the site was previously subdivided into several parcels and domestic wells were drilled on each parcel but were given the same site address. However only two wells presently reside on the subject parcel now identified as 6095 Bodega Avenue, well #143891 drilled in 1977 and well #WCR2018-004761 drilled in 2018. Well#143891 will be used only as a monitoring well while well #WCR2018-004761 will be the only well used for the proposed project as well as for residential domestic purposes. The exact locations of the other 5 wells that previously belonged to parcel 022-200-002 are not known. Available well logs are included in APPENDIX D. Most of the wells identified were completed to total depths less than 200 feet and appear to obtain water from shallow marine sandstone deposits likely from the Wilson Grove Formation. Some deeper wells (>250 feet) identified in the area appear to penetrate shale layers likely from the underlying Franciscan Assemblage. The project well was completed to a total depth of 300 feet while the
average well depth for the area is 183 feet. The well has a screen interval of 180 feet and the average well screen thickness in the Cumulative Impact Area is 100 feet. The Project well was also installed with a 100-foot sanitary seal per Permit Sonoma -West Petaluma High Nitrate Area Guidelines. **TABLE 3 WELL INVENTORY** | TABLES | 4 TOTO 114 A | ENTOR | 1 | | | | | | | |--|-------------------|---------------------------------------|--------------------------------|----------------------------------|-------------------------------|--|------------------------|------------------------------|----------------------| | APN or
Address/
Well No. | Well
Installed | Distance
to Site
Well
(Feet) | Surface
Elevation
(Feet) | Total
Well
Depth
(Feet) | Screen
Interval
(Feet) | Total
Screen
Thickness
(Feet) | Well
Yield
(GPM) | Draw-
down
(Feet) | Specific
Capacity | | Site Well
(6/2018)
022-200-002
Well #
WRC2018-
004761 | 2018 | 0 | 180 | 300 | 120-300 | 180 | 7 | 124 | 0.056 | | 022-200-002
Well # 80477 | 1964 | Exact
distance
unknown | Unknown | 160 | 40-100,
120-160 | 100 | 9 | 143 | 0.063 | | 022-200-002
Well # 80482 | 1964 | Exact
distance
unknown | Unknown | 114 | 34-114 | 80 | 5 | 90 | 0.056 | | 022-200-002
Well # 80488 | 1964 | Exact
distance
unknown | Unknown | 295 | "Open
Hole" | NA | 10 | 200 | 0.050 | | 022-200-002
Well # 80489 | 1964 | Exact
distance
unknown | Unknown | 204 | 64-84,
104-144,
164-204 | 100 | 8 | 135 | 0.059 | | 022-200-002
Well # 80491 | 1964 | Exact
distance
unknown | Unknown | 136 | 36-136 | 100 | 12 | 116 | 0.103 | | 022-200-002
Well # 143891 | 1975 | 310 | 165 | 160 | 40-160 | 120 | 10 | 225 | 0.044 | | 022-330-010
Well # 143874 | 1976 | 680 | 160 | 155 | 73-100 | 27 | 6 | 100 | 0.060 | | 022-330-008/
Well # 066438 | 1979 | 1,170 | 200 | 185 | 65-85,
105-125,
145-185 | 80 | 7 | 135 | 0.052 | | 022-330-004/
Well # 91008 | 1975 | 1,800 | 280 | 200 | 50-102 | 52 | 4 | 60 | 0.067 | | 022-190-015/
Well # 143889 | 1977 | 1950 | 250 | 203 | "None" | NA | 4 | 90 | 0.044 | | 4381 Middle
Two Rock Rd.
Well # 52699 | 1959 | 2,100 | 250 | 30 | NA | NA | 3 | NA | NA | | 022-190-012/
Well # 812610 | 2000 | 2,715 | 160 | 250 | 130-250 | 120 | 20 | 250 | 0.080 | | 022-330-001/
Well # 338650 | 1990 | 2,850 | 350 | 257 | 117-257 | 140 | 20 | 110 | 0.181 | | 4045 Middle
Two Rock Rd./
Well # 24918 | 1956 | 2,950 | 385 | 130 | NA | NA | 1 | 128 | 0.008 | | 6410 Bodega
Ave./
Well # 2910 | 1957 | 3,530 | 125 | 155 | NA | NA | 3.75 | 140 | 0.027 | | | Average W | ell TD =183 f | eet | | | een Thickness) feet | | ge Specific C
gpm/foot dr | | Review of the Well Completion Report for the on-site Project water well (Well Completion Report No. WCR2018-004761) indicates the site well was installed in June 2018 to a total depth of 300 feet and completed at 300 feet. According to the Well Completion Report, the well penetrated layers of brown and blue sandy clay with the saturated areas consisting of sedimentary rock likely composed of the Wilson Grove Formation. The well logs for other nearby wells (within the Cumulative Impact Area) recorded similar subsurface conditions. All sixteen of the well logs within the cumulative impact area exhibit lithologies consisting of various colored sandstone. In addition, wells #80482, #177254, #143889, #338650 and #2910 also exhibit layers of clay interfingered throughout the sandstone. Well #812610 was drilled into sandstone to a depth of 240, however the well drillers noted that the remaining 10 feet (from 240-250 feet) was drilled into yellow Franciscan shale. These well log descriptions suggest that the wells were drilled into the Wilson Grove Formation and that the Franciscan Formation can be found at depth underlying the Wilson Grove. The well yields for the sixteen wells identified varied from 1 to 20 gpm with an average yield of 8.1 gpm. ### 4.3.1 Site Well Yield Test K = T / D (Aquifer Thickness) Petersen Drilling and Pump, Inc. (Petersen) conducted a 72-hour well yield test on the Project Well between June 26, 2018, and June 29, 2018. The test pump was set at a depth of 280 feet bg. Petersen listed the static water level at 56.034 feet, a total drawdown of 124 feet and a sustained yield of 7gpm. Based on this information we calculated a specific capacity for the well of 0.056. The well yield test data and calculations are attached in **APPENDIX E**. HES also used the specific capacity calculation from the well yield test to calculate an aquifer transmissivity (T) and aquifer hydraulic conductivity (K). Using relationships between specific capacity and transmissivity (Discoll, 1986, Appendix 16D) aquifer transmissivity is approximately equal to specific capacity x 1,500 for unconfined aquifers and 2,000 for confined aquifers. Assuming generally unconfined conditions at the site we calculated the following aquifer Transmissivity: ``` T = 0.056 gpm/foot (Specific Capacity from well test) x 1,500 (unconfined aquifer) = 84 gpf/day = Aquifer Transmissivity ``` Based on the relationship between Transmissivity and hydraulic conductivity we can calculate the aquifers hydraulic conductivity (K) using the following relationships and equations. ``` K = 84 \text{ gpd/foot (transmissivity)} / 180 \text{ feet (onsite aquifer thickness)} = 0.47 \text{ gpd/ft}^2 ``` The K value calculated above generally correlates to fractured sandstone or fine to coarse sand (Driscoll, Figure 5.1.4) and is likely representative of the Wilson Grove Formation. #### 5.0 WATER BALANCE INFORMATION The USGS and DWR studies that included the Petaluma area provided water balance information that HES used to assess groundwater sustainability within the Cumulative Impact Area. #### 5.1 GROUNDWATER STORAGE HES used well log information from eleven wells to estimate the aquifer thickness beneath the Cumulative Impact Area. The average screened interval for 11 wells was estimated at 100 feet. A 2013 USGS study in the nearby Santa Rosa Plain estimated the average specific yield of the Santa Rosa region at 5 percent $(0.05)^{15}$. Therefore, using this data the Aquifer Storage can be estimated using the following equation 100 feet (Aquifer Thickness) x 0.05 (Specific Yield) x 604 acres (Cumulative Impact Area) = Estimated Aquifer Storage = 3,020 acre-feet ### 5.2 PRECIPITATION Precipitation, primarily as rainfall is the major source of inflow to the Petaluma Valley Watershed and our defined Cumulative Impact Area. Mean seasonal precipitation maps from Sonoma County Water Agency¹⁶ and various local studies referenced in this report indicate the mean annual rainfall in the site vicinity is about 25 to 30 inches per year (averaged to approximately 2.3 feet per year) (**PLATE 7 - PRECIPITATION MAP**). Precipitation over the Cumulative Impact Area is: 2.3 feet/year (Regional Precipitation) x 604 acres (Cumulative Impact Area) = Precipitation in Cumulative Impact Area = 1,389 acre-feet/year. #### 5.3 GROUNDWATER RECHARGE Groundwater recharge is the replenishment of an aquifer with water from the land surface. It is usually expressed as an average rate of inches of water per year, similar to precipitation. Thus, the volume of recharge is the rate times the land area under consideration times the time period, and is usually expressed as acre-feet per year. In addition to precipitation, other sources of recharge to an aquifer are stream and lake or pond seepage, irrigation return flow (both from canals and fields), inter-aquifer flows, and urban recharge (from water mains, septic tanks, sewers, drainage ditches). For our defined Cumulative Impact Area, the interspersed clay beds that accompany the sandstone of the Merced/Wilson Grove Formation characterizes the aquifer as confined to semi- ¹⁵ Hydrologic and Geochemical Characterization of the Santa Rosa Plain Watershed, Sonoma County, California, U.S. Geological Survey, Scientific Investigations Report 2013–5118. ¹⁶ Sonoma County Mean Seasonal Precipitation in Flood Control Design Criteria manual: Plate No. B-3, Sonoma County Water Agency, Revised January 2005. confined. Drainage features that intersect and border the Cumulative Impact Area have likely eroded through the limited overlying confining layers and are contributing to the recharge of the regional aquifer through stream bottoms. However, it is also likely that a portion of the rain water falling directly on the site infiltrates the ground surface and migrates downward through the soil matrix and rock pores until it recharges the aquifer. Soil types and land cover within the watershed affect the extent and magnitude of storm water runoff (retention and infiltration). To estimate the groundwater recharge within the Cumulative Impact Area HES first assumed that the recharge to the aquifer is primarily through rainfall and that all rainfall accumulated within the 604-acre Cumulative Impact Area drains to the creeks proximate to the site. However, this estimate does not account for surface run-off, stream underflow, and evapo-transpiration. Therefore, to estimate the percentage of rainfall that contributes to recharge of the aquifer, HES reviewed available groundwater studies including the Santa Rosa Plain Watershed Groundwater Management Plan, and the USGS Scientific Investigation Report 2006-51157, as well as other regional groundwater studies in Sonoma County. Estimates for recharge found in these documents are considered to be reliable for our site evaluation. Average recharge to the groundwater system for the entire Santa Rosa Plain, including mountainous zones, is derived from an estimated average of 531,000 acre-ft of precipitation falling within the entire watershed. After accounting for runoff (188,400 acre-feet/year) and
evapotranspiration (262,000 acre-feet/year), the amount of water recharging the Santa Rosa Plain Watershed equates to 80,600 acre-ft/year or approximately 15.2% of the annual rainfall. However significant variations to this value can occur based on topography, soil infiltration rates, geology etc., and according to these USGS and Sonoma County Water Agency Reports, the long-term average precipitation that recharges groundwater in these regions can be as low as 1.67%. While these USGS studies are not specific to the site or the defined Cumulative Impact Area, the average long-term recharge to the aquifer within our defined Cumulative Impact Area likely falls within the ranges seen in the nearby watersheds. HES conservatively estimates that 10% of rainfall likely contributes to groundwater recharge within the defined Cumulative Impact Area. Based on this recharge value we can re-calculate the groundwater recharge within the Cumulative Impact Area using the following data and equation. 1,389 acre-feet/year (annual precipitation in CIA) x 0.10 (estimated long term recharge average) = Annual Aquifer Recharge = 138.9 acre-feet/year # 6.0 WATER QUALITY Elevated levels of nitrate have been identified in groundwater within the western portions of the Petaluma Valley due to past land use practices. A 2013 USGS groundwater study indicates chloride, total dissolved solids, nitrate, arsenic, boron, iron, and manganese are water-quality constituents of potential concern in the region. In addition, a report from the California Department of Water Resources in 1982 found that saltwater intrusion from the tidally influenced portion of the Petaluma River affected shallow aquifers prior to 1962, but that there had been no further incursions after that time. They attributed the lack of further saltwater intrusion to substitution of groundwater with surface water. On June 28, and July 6, 2018, water samples were collected from the onsite well and tested for volatile organic compounds (VOC's) Total Coliform and E. Coli bacteria, nitrates, arsenic, zinc, iron, manganese, boron, sodium, calcium, magnesium, silica, aluminum, chloride, Sulfate as SO4, and Total dissolved solids (TDS). Results of the water sampling are presented below in **TABLE 3** and **APPENDIX F – LABORATORY REPORTS**. TABLE 3 – Water Quality Data | Location (APN) | VOC's | рН | EC
μS/cm | Silica | Nitrate
as N
(Mg/L) | Total
Coliform
(MPN/ | E-Coli
Bacteria
(MPN/ | Arsenic
(ug/L) | Zinc
(mg/L) | |---|--------|------|-------------|--------|---------------------------|----------------------------|-----------------------------|-------------------|----------------| | 022-200-002 | NA | 9.09 | 530 | 35 | ND | 100 ML) <1* | 100 ML) <1* | ND | ND | | California
Maximum
Contaminant
Level (MCL) | Varies | NA | NA | NA | 10 | <1 | <1 | 10 | 5** | NA Not Applicable **TABLE 3 – Water Quality Data (Continued)** | Location | Boron | Sodium | Sulfate
as SO4 | TDS | Magnesium | Calcium | Chloride | Aluminum | Manganese | Iron | | |---|-------|--------|-------------------|------|-----------|---------|----------|----------|-----------|------|--| | (APN) | mg/L | | | | | | | ug/L | | | | | 022-200-002 | 0.078 | 110 | 2.6 | 340 | 0.59 | 3.4 | 20 | 770 | ND | 580 | | | California
Maximum
Contaminant
Level (MCL) | 1** | NA | NA | 500* | NA | NA | 500* | 1000 | 50 | 300* | | ^{*}California Secondary Maximum Contaminant Levels NA – Not Applicable Hardness = 11 ND Non Detect ^{*} Initial Samples Collected on June 28 indicated that Total Coliform concentrations were >2400 and E-Coli concentrations were 1. The well was resampled on July 6, 2018 and the sample results were both <1. ^{**} California Secondary Drinking Water Standard ^{**} California Notification Level The results of the water quality testing performed on the project well indicate that bacteria contamination was present in the first sample collected on June 28, 2018. A subsequent groundwater sample was collected and tested for Total Coliform and E Coli bacteria on July 6, 2018 and analytical results indicated the bacteria was no longer present. It is not uncommon for initial water tests in newly drilled wells to contain bacterial contamination introduced during the drilling and well completion processes. No other contaminants were identified in the well water above the California Primary or Secondary Maximum Contaminant Levels for Drinking Water. #### 7.0 POTENTIAL IMPACTS TO STREAMS AND NEIGHBORING WELLS HES estimated the radius of influence of the planned site well to evaluate potential well pumping impacts to wells on other properties and impact to the nearby unnamed creek. Using general relationships discussed in Driscoll (1986), HES estimated the lateral pumping influence using information from the 2018 well yield test performed by Petersen. HES used an approximate relationship between specific capacity calculated from the well yield test and aquifer transmissivity, based on "typical" pump test values. Since the site aquifer is considered to be unconfined to semi-confined, transmissivity was estimated for an unconfined aquifer, using the relationship of Specific Capacity (yield/drawdown) x 1,500 (unconfined). To develop the slope of the drawdown curve from the pumping well, HES calculated the value of Δs (drawdown over one log graph cycle) for a distance-drawdown relationship, where T = 528Q/ Δs (Driscoll,1986, Equation 9.11). The analysis is shown on the attached semi-log plot, **APPENDIX G**. As estimated for an unconfined aquifer, pumping the project well at 7 gpm for 72 hours might result in a zone of pumping influence extending 300 feet from the well. The closest neighboring well (#143891) which is approximately 310 feet from the site well is located just at the limits of the potential area of pumping influence. Well #143891 is on the project site and will be used as a monitoring well and will not be used for any project or domestic water uses. The nearest surface water is the unnamed intermediate stream along Bodega Highway located approximately 990 feet northwest of the project well and is also outside the wells potential area of pumping influence. The maximum daily Project water demand is 2,180 gallons (irrigation, evaporative cooler and site workers), which would require about 5 hours and 20 minutes of pumping with a well yield of 7 gpm. Therefore, the actual extent of pumping influence from the Project well will likely be less than estimated in our calculations. #### 8.0 CONCLUSIONS Aquifers within the Wilson Grove Formation beneath the site are generally considered unconfined to semiconfined and recharge to the aquifer likely occurs primarily from rainfall and creek beds proximate to the property. The wells identified within the Cumulative Impact Area have an average thickness of 100 feet and if extended over the entire 604-acre area produces an estimated total aquifer storage value of 3,020 acre-feet. Based on annual precipitation and estimated aquifer recharge rates, the annual recharge to the aquifer is estimated to be 138.9-acre-feet. The current annual water demand within the Cumulative Impact Area (including the site) is conservatively estimated to be 30.20 acre-feet, and the future potential water demand is estimated at 55.96 acre-feet. The estimated annual water demand for the proposed Project is 1.58 acre-feet (without consideration of the Applicant's rainwater catchment offset plans). The total annual water demand proposed for the site is sustainable based on current and future development within the Cumulative Impact Area. In summary: | 3,020.00 acre-feet | Aquifer Storage | |--------------------|---| | 138.90 acre-feet | Annual Recharge to Aquifer | | 30.20 acre-feet | Cumulative Impact Area Current Annual Water Demand | | 55.96 acre-feet | Cumulative Impact Area Future Potential Annual Water Demand | | 1.58 acre-feet | Site Project Annual Water Demand | | 0.80 acre-feet | Site Estimated Rainfall Catchment System Offset | | | | Based on the conservative assumptions and estimates presented in this report, the quantity of groundwater to be used for the project and within the Cumulative Impact Area compared to the quantity of available groundwater indicates that pumping for the Project is unlikely to result in significant declines groundwater resources over time. Based on the findings of this report, pumping and groundwater extraction at the Project well will not significantly impact neighboring wells or stream flow conditions in nearby creeks. In addition, based on the relative distance to the coastal areas, the depth of the site well and the proposed water usage rates, salt water intrusion is not considered to be a concern to this Assessment. #### 9.0 LIMITATIONS HES is not responsible for the independent conclusions, opinions or recommendations made by others based on the records review, site inspection, field exploration, laboratory test data and interpretations presented in this report. Groundwater systems of Sonoma County are typically complex, and available data rarely allows for more than general assessment of groundwater conditions and delineation of aquifers. Hydrogeologic interpretations are based on the drillers' reports made available to us through the California Department of Water Resources, available geologic maps and hydrogeologic studies and professional judgment. This analysis is based on limited available data and relies significantly on interpretation of data from disparate sources of disparate quality. It should be noted that hydro-geological assessments are inherently limited in the sense that conclusions are drawn and recommendations developed from information obtained from limited research and site evaluation. Additionally, the passage of time may result in a
change in the environmental characteristics at this site and surrounding properties. This report does not warrant against future operations or conditions, nor does this warrant operations or conditions present of a type or at a location not investigated. This study is not intended to assess if any soil contamination, waste emplacement, or groundwater contamination exists by subsurface sampling through the completion of soil borings and the installation of monitoring wells. The scope of work, determined by the client, did not include these activities. This Report is for the exclusive use of Michael Wright, his affiliates, designates and assignees and no other party shall have any right to rely on any service provided by Hurvitz Environmental Services without prior written consent. FX: 707.824.2675 HURVITZ.ENVIRONMENTAL@GMAIL.COM CA PG# 7573 6095 BODEGA AVE PETALUMA, CALIFORNIA 94952 105 MORRIS ST, STE 188 SEBASTOPOL, CA 95472 PH: 707.824.1690 FX: 707.824.2675 HURVITZ.ENVIRONMENTAL@GMAIL.COM CA PG# 7573 # ASSESSORS PARCEL MAP 022-200-002 6095 BODEGA AVE PETALUMA, CALIFORNIA 94952 5021.01 DATE: 6/18/18 105 MORRIS ST, STE 188 SEBASTOPOL, CA 95472 PH: 707.824.1690 FX: 707.824.2675 HURVITZ.ENVIRONMENTAL@GMAIL.COM CA PG# 7573 # TOPOGRAPHIC MAP 022-200-002 6095 BODEGA AVE PETALUMA, CALIFORNIA 94952 JOB NUMBER: 5021.01 DATE: 6 /18 /18 6/18/18 105 MORRIS ST, STE 188 SEBASTOPOL, CA 95472 PH: 707.824.1690 FX: 707.824.2675 HURVITZ.ENVIRONMENTAL@GMAIL.COM CA PG# 7573 # **ENGINEERED SITE LAYOUT** 022-200-002 6095 BODEGA AVE PETALUMA, CALIFORNIA 94952 JOB NUMBER: 5021.01 DATE: 6/18/18 105 MORRIS ST, STE 188 SEBASTOPOL, CA 95472 PH: 707.824.1690 FX: 707.824.2675 HURVITZ.ENVIRONMENTAL@GMAIL.COM CA PG# 7573 # SITE PLAN - CUMULATIVE IMPACT AREA 022-200-002 6095 BODEGA AVE PETALUMA, CALIFORNIA 94952 JOB NUMBER: 5021.01 DATE: 6/18/18 105 MORRIS ST, STE 188 SEBASTOPOL, CA 95472 PH: 707.824.1690 FX: 707.824.2675 HURVITZ.ENVIRONMENTAL@GMAIL.COM CA PG# 7573 # GEOLOGIC MAP 022-200-002 6095 BODEGA AVE PETALUMA, CALIFORNIA 94952 JOB NUMBER: 5021.01 DATE: 6/18/18 CA PG# 7573 | | Surficial Sediments | |-------|---| | af | Artificial Fill | | Qhym | Mud deposits (late Holocene) | | Qhy | Alluvium (late Holocene) | | Qha | Alluvium (Holocene) | | Qs | Beach and dune sand (Quaternary) | | Qsl | Hillslope Deposits (Quaternary) | | Qpa | Alluvium (Pleistocene) | | Qt | Marine terrace deposits (Pleistocene) | | Qoa | Alluvium (early Pleistocene) | | | Overlying Rocks | | QTs | Sediments (early Pleistocene and (or) Pliocene) | | QTv | Volcanic rocks (early Pleistocene and (or) Pliocene) | | Tps | Sedimentary rocks (Pliocene) | | Tpv | Volcanic rocks (Pliocene) | | Tpms | Sedimentary rocks (Pliocene and early Miocene) | | Tpmv | Volcanic rocks (Pliocene and early Miocene) | | Tms | Sedimentary rocks (Miocene) | | Tmv | Volcanic rocks (Miocene) | | Tmos | Sedimentary rocks (Miocene and (or) Oligocene) | | Tmov | Volcanic rocks (Miocene and/or Oligocene) | | Tmoes | Sedimentary rocks (Miocene, Oligocene, and (or) Eocene) | | Tos | Sedimentary rocks (Oligocene) | | Tov | Volcanic rocks (Oligocene) | | Toes | Sedimentary rocks (Oligocene and (or) Eocene) | | Tes | Sedimentary rocks (Eocene) | | Tepas | Sedimentary rocks (Eocene and (or) Paleocene) | | Tpas | Sedimentary rocks (Paleocene) | | TKs | Sedimentary rocks (Paleocene and (or) Late Cretaceous) | | | Basement Complex Rocks | |-------|---| | TKfs | Franciscan Complex sedimentary rocks (Eocene, Paleocene, and (or) Late Cretaceous) | | fsr | Franciscan Complex mélange (Eocen, Paleocent, and (or) Late Cretaceous) | | TKfv | Franciscan Complex volcanic rocks (Paleocene and (or) Late Cretaceous) | | Ks | Great Valley complex sedimentary rocks (Cretaceous) | | Kfs | Franciscan Complex sedimentary rocks (Cretaceous) | | Kfv | Franciscan Complex volcanic rocks (Cretaceous) | | Kfm | Franciscan Complex metamorphic rocks (Cretaceous) | | Kgr | Salinian complex plutonic (granite) rocks (Cretaceous) | | Юs | Great Valley complex sedimentary rocks (Early Cretaceous and (or) Late Jurassic) | | Юу | Franciscan or Great Valley complex volcanic rocks (Early Cretaceous and (or) Late Jurassic) | | KJfs | Franciscan Complex sedimentary rocks (Early Cretaceous and (or) Late Jurassic) | | KJfc | Franciscan Complex chert (Early Cretaceous and (or) Late Jurassic) | | KJfv | Franciscan Complex volcanic rocks (Early Cretaceous and (or) Late Jurassic) | | KJfm | Franciscan Complex metamorphic rocks (Early Cretaceous and (or) Late Jurassic) | | KJfvc | Franciscan Complex volcanic rocks and chert (Early Cretaceous and (or)
Late Jurassic) | | KJfvs | Franciscan Complex volcanic and sedimentary rocks (Early Cretaceous and (or) Late Jurassic) | | Jv | Great Valley complex volcanic rocks (Jurassic) | | Ji | Great Valley complex plutonic rocks (Jurassic) | | Jsp | Great Valley complex serpentinite (Jurassic) | | Jfv | Franciscan Complex volcanic rocks (Jurassic) | | Jhg | Salinian complex plutonic rocks (Jurassic) | | MzPzm | Salinian complex metamorphic rocks (Mesozoic and (or) Paleozoic) | | _ | Depositional or intrusive contact | | _ | Fault | | | Fault active in the Holocene (within the last 11,500 years) | | A | Letter showing the approximate location where a rock or fossil on this poster was found | 105 MORRIS ST, STE 188 SEBASTOPOL, CA 95472 PH: 707.824.1690 FX: 707.824.2675 HURVITZ.ENVIRONMENTAL@GMAIL.COM CA PG# 7573 # REGIONAL GEOLOGIC MAP KEY 022-200-002 6095 BODEGA AVE PETALUMA, CALIFORNIA 94952 JOB NUMBER: 5021.01 DATE: 6/18/18 # APPENDIX A PHOTOGRAPHIC LOG # SITE PHOTOGRAPHS July 19, 2018 Photo 1: View of Project well installed in June 2018 and proposed for cannabis irrigation. Photo 2: Alternate view of Project well. Installed to 300 feet with 100' annular seal. # SITE PHOTOGRAPHS July 19, 2018 Photo 3: View of domestic well that supplies water to the residence onsite. # SITE PHOTOGRAPHS July 19, 2018 Photo 4: View southerly of drainage swale to that intersects the site. Photo 5: Alternate view of drainage swale that originates on the adjacent property to the south. # APPENDIX B WEATHER DATA FROM WEATHERSPARK.COM ### Average Weather in Petaluma California, United States In Petaluma, the summers are long, warm, arid, and mostly clear and the winters are short, cold, wet, and partly cloudy. Over the course of the year, the temperature typically varies from 39°F to 83°F and is rarely below 30°F or above 93°F. The warm season lasts for 4.1 months, from June 9 to October 12, with an average daily high temperature above 77°F. The hottest day of the year is August 23, with an average high of 83°F and low of 52°F. The cool season lasts for 2.5 months, from November 27 to February 12, with an average daily high temperature below 61°F. The coldest day of the year is December 31, with an average low of 39°F and high of 55°F. The daily average high (red line) and low (blue line) temperature, with 25th to 75th and 10th to 90th percentile bands. The thin dotted lines are the corresponding average perceived temperatures. The figure below shows you a compact characterization of the entire year of hourly average temperatures. The horizontal axis is the day of the year, the vertical axis is the hour of the day, and the color is the average temperature for that hour and day. The average hourly temperature, color coded into bands: frigid < 15°F < freezing < 32°F < chilly < 45°F < cold < 55°F < cool < 65°F < comfortable < 75°F < warm < 85°F < hot < 95°F < cold < 55°F < cold < 55°F < cold < 55°F < cold < 65°F < comfortable < 75°F < warm < 85°F < hot < 95°F < cold < 55°F < cold < 55°F < cold < 55°F < cold < 65°F 65° #### Clouds In Petaluma, the average percentage of the sky covered by clouds experiences significant seasonal variation over the course of the year. The clearer part of the year in Petaluma begins around May 17 and lasts for 5.2 months, ending around October 24. On July 20, the clearest day of the year, the sky is clear, mostly clear, or partly cloudy 92% of the time, and overcast or mostly cloudy 8% of the time. The cloudier part of the year begins around October 24 and lasts for 6.8 months, ending around May 17. On January 11, the cloudiest day of the year, the sky is overcast or mostly cloudy 57% of the time, and clear, mostly clear, or partly cloudy 43% of the time. The percentage of time spent in each cloud cover band, categorized by the percentage of the sky covered by clouds: clear < 20% < mostly clear < 40% < partly cloudy < 60% < mostly cloudy < 80% < overcast. #### Precipitation A wet day is one with at least 0.04 inches of liquid or liquid-equivalent precipitation. The chance of wet days in Petaluma varies significantly throughout the year. The wetter season lasts 5.3 months, from November 2 to April 10, with a greater than 16% chance of a given day being a wet day. The chance of a wet day peaks at 32% on February 20. The drier season lasts 6.7 months, from April 10 to November 2. The smallest chance of a wet day is 0% on July 25. Among wet days, we distinguish between those that experience rain alone, snow alone, or a mixture of the two. Based on this categorization, the most common form of precipitation throughout the year is rain alone, with a peak probability of 32% on February 20. Daily Chance of Precipitation The percentage of days in which various types of precipitation are observed, excluding trace quantities: rain alone, snow alone, and mixed (both rain and snow fell in the same day). #### Rainfall To show variation within the months and not just the monthly totals, we show the rainfall accumulated over a sliding 31-day period centered around each day of the year. Petaluma experiences extreme seasonal variation in monthly rainfall. The rainy period of the year lasts for 7.8 months, from September 30 to May 25, with a sliding 31-day rainfall of at least 0.5
inches. The most rain falls during the 31 days centered around February 15, with an average total accumulation of 5.1 inches. The rainless period of the year lasts for 4.2 months, from May 25 to September 30. The least rain falls around July 31, with an average total accumulation of 0.0 inches. The average rainfall (solid line) accumulated over the course of a sliding 31-day period centered on the day in question, with 25th to 75th and 10th to 90th percentile bands. The thin dotted line is the corresponding average liquid-equivalent snowfall. #### Sun The length of the day in Petaluma varies significantly over the course of the year. In 2017, the shortest day is December 21, with 9 hours, 30 minutes of daylight; the longest day is June 21, with 14 hours, 50 minutes of daylight. Hours of Daylight and Twilight The number of hours during which the Sun is visible (black line). From bottom (most yellow) to top (most gray), the color bands indicate: full daylight, twilight (civil, nautical, and astronomical), and full night. The earliest sunrise is at 5:46 AM on June 13, and the latest sunrise is 1 hour, 54 minutes later at 7:40 AM on November 4. The earliest sunset is at 4:50 PM on December 6, and the latest sunset is 3 hours, 48 minutes later at 8:37 PM on June 28. Daylight saving time (DST) is observed in Petaluma during 2017, starting in the spring on March 12, lasting 7.8 months, and ending in the fall on November 5. The solar day over the course of the year 2017. From bottom to top, the black lines are the previous solar midnight, sunrise, solar noon, sunset, and the next solar midnight. The day, twilights (civil, nautical, and astronomical), and night are indicated by the color bands from yellow to gray. The transitions to and from daylight saving time are indicated by the 'DST' labels. #### Humidity We base the humidity comfort level on the dew point, as it determines whether perspiration will evaporate from the skin, thereby cooling the body. Lower dew points feel drier and higher dew points feel more humid. Unlike temperature, which typically varies significantly between night and day, dew point tends to change more slowly, so while the temperature may drop at night, a muggy day is typically followed by a muggy night. The perceived humidity level in Petaluma, as measured by the percentage of time in which the humidity comfort level is muggy, oppressive, or miserable, does not vary significantly over the course of the year, remaining a virtually constant 0% throughout. **Humidity Comfort Levels** The percentage of time spent at various humidity comfort levels, categorized by dew point: dry < 55°F < comfortable < 60°F < humid < 65°F < muggy < 70°F < oppressive < 75°F < miserable. #### Wind This section discusses the wide-area hourly average wind vector (speed and direction) at 10 meters above the ground. The wind experienced at any given location is highly dependent on local topography and other factors, and instantaneous wind speed and direction vary more widely than hourly averages. The average hourly wind speed in Petaluma experiences mild seasonal variation over the course of the year. The windier part of the year lasts for 5.2 months, from February 14 to July 20, with average wind speeds of more than 4.1 miles per hour. The windiest day of the year is May 30, with an average hourly wind speed of 4.6 miles per hour. The calmer time of year lasts for 6.8 months, from July 20 to February 14. The calmest day of the year is October 21, with an average hourly wind speed of 3.6 miles per hour. The predominant average hourly wind direction in Petaluma varies throughout the year. The wind is most often from the west for 8.5 months, from February 19 to November 4, with a peak percentage of 89% on July 30. The wind is most often from the north for 3.5 months, from November 4 to February 19, with a peak percentage of 41% on January 1. Wind Direction The percentage of hours in which the mean wind direction is from each of the four cardinal wind directions (north, east, south, and west), excluding hours in which the mean wind speed is less than 1 mph. The lightly tinted areas at the boundaries are the percentage of hours spent in the implied intermediate directions (northeast, southeast, southwest, and northwest). #### Water Temperature Petaluma is located near a large body of water (e.g., ocean, sea, or large lake). This section reports on the wide-area average surface temperature of that water. The average water temperature experiences some seasonal variation over the course of the year. The time of year with warmer water lasts for 2.5 months, from August 11 to October 26, with an average temperature above 56°F. The day of the year with the warmest water is September 22, with an average temperature of 57°F. The time of year with cooler water lasts for 3.2 months, from March 21 to June 26, with an average temperature below 53°F. The day of the year with the coolest water is May 12, with an average temperature of 52°F. ### Solar Energy This section discusses the total daily incident shortwave solar energy reaching the surface of the ground over a wide area, taking full account of seasonal variations in the length of the day, the elevation of the Sun above the horizon, and absorption by clouds and other atmospheric constituents. Shortwave radiation includes visible light and ultraviolet radiation. The average daily incident shortwave solar energy experiences extreme seasonal variation over the course of the year. The brighter period of the year lasts for 3.6 months, from May 7 to August 25, with an average daily incident shortwave energy per square meter above 7.1 kWh. The brightest day of the year is June 28, with an average of 8.4 kWh. The darker period of the year lasts for 3.6 months, from November 3 to February 19, with an average daily incident shortwave energy per square meter below 3.4 kWh. The darkest day of the year is December 26, with an average of 2.1 kWh. #### Average Daily Incident Shortwave Solar Energy The average daily shortwave solar energy reaching the ground per square meter (orange line), with 25th to 75th and 10th to 90th percentile bands. #### **Topography** For the purposes of this report, the geographical coordinates of Petaluma are 38.232 deg latitude, -122.637 deg longitude, and 92 ft elevation. The topography within 2 miles of Petaluma contains significant variations in elevation, with a maximum elevation change of 522 feet and an average elevation above sea level of 113 feet. Within 10 miles contains significant variations in elevation (2,454 feet). Within 50 miles contains large variations in elevation (4,701 feet). The area within 2 miles of Petaluma is covered by artificial surfaces (56%), grassland (21%), and cropland (18%), within 10 miles by grassland (65%) and cropland (12%), and within 50 miles by water (35%) and grassland (19%). #### **Data Sources** This report illustrates the typical weather in Petaluma, based on a statistical analysis of historical hourly weather reports and model reconstructions from January 1, 1980 to December 31, 2016. #### Temperature and Dew Point There are 2 weather stations near enough to contribute to our estimation of the temperature and dew point in Petaluma. For each station, the records are corrected for the elevation difference between that station and Petaluma according to the International Standard Atmosphere & (https://en.wikipedia.org/wiki/International_Standard_Atmosphere), and by the relative change present in the MERRA-2 satellite-era reanalysis & (https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/) between the two locations. The estimated value at Petaluma is computed as the weighted average of the individual contributions from each station, with weights proportional to the inverse of the distance between Petaluma and a given station. The stations contributing to this reconstruction are: Gnoss Field (/y/145214/Average-Weather-at-Gnoss-Field-California-United-States) (82%, 12 kilometers, southeast) and Sonoma County Airport (/y/145216/Average-Weather-at-Sonoma-County-Airport-California-United-States) (18%, 34 kilometers, northwest). #### Other Data All data relating to the Sun's position (e.g., sunrise and sunset) are computed using astronomical formulas from the book, Astronomical Tables of the Sun, Moon and Planets & (https://www.amazon.com/Astronomical-Tables-Sun-Moon-Planets/dp/094339645X), by Jean Meeus. All other weather data, including cloud cover, precipitation, wind speed and direction, and solar flux, come from NASA's MERRA-2 Modern-Era Retrospective Analysis & (https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/). This reanalysis combines a variety of wide-area measurements in a state-of-the-art global meteorological model to reconstruct the hourly history of weather throughout the world on a 50-kilometer grid. Land Use data comes from the Global Land Cover SHARE database & (http://www.glcn.org/databases/lc_glcshare_en.jsp), published by the Food and Agriculture Organization of the United Nations. Elevation data comes from the Shuttle Radar Topography Mission (SRTM) 🗗 (http://www2.jpl.nasa.gov/srtm/), published by NASA's Jet Propulsion Laboratory. Names, locations, and time zones of places and some airports come from the GeoNames Geographical Database 🗗 (http://www.geonames.org/). Time zones for aiports and weather stations are provided by AskGeo.com ♂ (https://askgeo.com/). # APPENDIX C ENERGY EFFICIENCY IN CANNABIS CULTIVATION # **White Paper** # **Energy Efficiency in Cannabis Growing** ### **Background** Energy efficiency in a cannabis greenhouse is a result of many varied functions. Similar to a home, there are extensive maintenance tasks, which if consistently implemented, can significantly reduce energy consumption as well as utility bills. Beyond maintenance, there are design and growing system components that also contribute to lower consumption patterns. When all of these areas are combined, then the cumulative impact can be
substantial. With a System 420TM hybrid greenhouse from Nexus, the grower can receive the privacy benefits of the indoor grow and the modern agricultural practices of the greenhouse. Cannabis crop efficiency, reduced operating costs, natural sunlight, and a healthier work atmosphere can be achieved in a hybrid greenhouse growing environment. As a greenhouse manufacturer, <u>Nexus</u> designs high quality, commercial greenhouses for the traditional horticulture and the emerging cannabis markets. The company partners with supplemental equipment providers, and manages integrated greenhouse development. This white paper outlines several items to consider for increasing cannabis greenhouse energy efficiency. #### **Key Statistics** • Outside of licensing fees, energy ranks as one of the top expenses for marijuana cultivators in many states – in some cases hitting \$10,000 or more a month for large growing operations http://mjbizdaily.com/zapped-by-escalating-energy-costs-marijuana-growers-seek-alternatives/ • Heating energy represents 70% to 80% of a greenhouse grower's total energy consumption https://articles.extension.org/sites/default/files/2.%20A3907-01.pdf With this level of costs, developing an efficiency plan may determine whether a cannabis company financially survives. The days of easy money in the cannabis industry are nearing a close. Falling prices, oversupply, and rising utility costs are contributing to a tighter financial model. Reducing utility bills are about more than increasing profit. Energy efficiency may determine business survival. #### **Structure Types** Gutter-connected cannabis greenhouses, which cover one-half of an acre (21,780 sq. ft.) have 10% to 15% less surface area and a lower amount of heat loss than most stand-alone greenhouses, which cover the same area. Stand-alone greenhouses have a surface area-to-floor area ratio of approximately 1.6 and gutter-connected greenhouses have a ratio of less than 1.4. A comparison of two greenhouse systems with 24,000 sq. ft. of floor space brings intriguing results. Each operation features LP gas power-vented unit heaters with a seasonal efficiency of 78%. - Grower #1 has eight 30 x 100 ft. greenhouses with 3-ft. sidewalls and 15-ft. peaks - **Grower #2** has one five-bay gutter-connected 150 x 160 ft. greenhouse (30 ft. wide bays) with 10 ft. sidewalls and a 15 ft. peak Grower #1 (stand-alone) will use 14,344 gallons of fuel and Grower #2 (gutter-connected) will use 11,929 gallons. Thus, the gutter-connected greenhouse will consume 2,415 less gallons for a 17% energy savings. ### **Roof & Wall Coverings** Cannabis greenhouse walls, which face north let in a smaller amount of light than the other walls, especially in the winter months. Insulation can be added to the north walls to reduce heat losses. If the walls have a white surface, light levels will be enhanced by reflecting winter sunlight that would have passed through the north wall. Using insulation between the metal side-walls and around heat plumbing provides significant energy savings. The addition of light deprivation or energy shade curtains is one of the most effective ways to conserve energy. This effort can reduce nighttime heat loss by about 50%. Another cannabis greenhouse area where heat is lost is along the inside perimeter through the greenhouse ground and sidewall portions. Insulated boards that run from the bench height to slightly below the ground level contribute to about a 5% energy savings. Light deprivation curtains also contribute to energy efficiency by retaining heat during the night or blackout hours. #### **Heating** Cannabis greenhouse heating energy efficiency involves the type of heating system, location, and maintenance. Unit heaters are popular in greenhouses due to low capital and installation costs, dependability, and staging ease. Multiple heaters are highly recommended to reduce the potential for total heat loss from equipment failure. In larger greenhouses, a central hot water boiler is a common choice. Heat is distributed through heated floors, radiant heat pipes, or water-to-air heat exchangers. An efficient boiler with consistent maintenance will keep energy costs at reasonable levels. A productive heat distribution location can lower energy consumption while increasing plant growth and yields. Cannabis greenhouses frequently use one or two forced-air unit heaters that distribute air above the plant height level. When two unit heaters are used, then placement usually occurs in opposite corners on opposite ends of the greenhouse to create circular airflow. Heaters are often placed at elevated heights to allow more room for benching systems. Since heat rises, the entire greenhouse must be heated to maintain the desired temperature at the crop level. Distributing heat from the floor, under benches, or bench-tops creates a growing climate that warms the plants and adjacent areas, yet does not heat up the entire greenhouse. Known as root-zone heating, this cannabis crop production method provides additional energy savings. Forced Air Overhead Unit Heaters #### **Horizontal Air Flow (HAF) Fans** Reducing air leaks and heat loss makes a cannabis greenhouse tighter. Regardless of the heating system type used, placing a sufficient number of HAF fans to adequately circulate air inside the greenhouse will increase energy efficiency. Solid air circulation will improve greenhouse temperature and humidity consistency, which reduces the number of cold pockets and improves plant quality and uniformity. Keeping the humidity level below 80% by venting, when necessary, minimizes disease incidence. Air circulation by the HAF fans should consist of two to three cu. ft. per min. over the greenhouse floor surface. A 28-ft. x 96-ft. greenhouse needs an airflow of 5,376 cu. ft. per min. (28 x 96 x 2 cu. ft. per min. per sq. ft. = 5,376 cu. ft. per min.). This cannabis greenhouse structure would require four HAF fans with a capacity of circulating air at 1,440 cu. ft. per min. HAF fans usually operate at two different speeds. Be sure to check the fan specifications to determine the necessary speed. These fans should be situated two to three feet above the plant height level and aligned parallel to the greenhouse sidewalls so that air can flow in a circular pattern. Winter operation is recommended to improve temperature and humidity levels. #### **Supplemental Lighting** The use of supplemental lighting allows the cannabis grower to accomplish the following: - Provide extra light on cloudy and low natural light days (winter, northern latitudes) - Different growing environments require a varied amount of accumulated light - Maintain consistent light levels during the year High intensity discharge (HID) lights are mainly used in greenhouses, which consist of two types. These types are high pressure sodium and metal halide fixtures. To decrease energy consumption, timers or light integral controls can be used. These types of controller measure the sunlight that enters the greenhouse on a daily basis and regulates the lights to ensure ample light reaches a minimum daily light integral, which determines plant growth. #### **LED** LED lighting technology is presently on the market and under testing in a wide range of scenarios. These lights are currently most effective in small batches where a modest number of lighting fixtures can enhance growth on a limited number of plants in concentrated areas. On a larger scale, more research needs to occur to justify the light fixture costs. The future potential for these lights is significant, yet wide-scale distribution will not occur until there is greater product quality consistency and more cost-effective prices. #### **Light Transmitting Coverings & Light Deprivation** The greatest benefit of a cannabis greenhouse is the energy saved by using the free light of the sun. Greenhouses are covered by light transmitting coverings, which allow in 80% to 90% of the available sunlight. The differences in light transmission are due to the variety of coverings used on the greenhouse roof and sidewalls. These coverings reduce the necessary amount of artificial and supplemental lighting that decrease overall energy consumption. Light deprivation is a technique of altering the light cycle of flowering plants. These systems utilize the power of natural sunlight, an abundant source of free energy. Cannabis greenhouses use blackout curtains to block light and deny the crop an extended photoperiod. A light deprivation system inside a cannabis greenhouse can reduce heating costs by at least 50%. The use of sunlight decreases the role of artificial lighting, which is a large part of the utility cost structure. As a result, greenhouses have increased overall energy efficiency. According to curtain manufacturer, Ludvig Svensson, the utility costs within a greenhouse are 50-75% lower than in an indoor warehouse growing environment. The blackout curtains underneath the roof coverings and along the sidewalls help retain heat during the dark periods. Heat is retained in the growing area without losing heat energy through the roof. This process needs to be carefully managed to prevent extreme heat buildup, which can damage plants. Blackout curtains as a part of a hybrid heat-saving curtain #### **Environmental Controls** There are many greenhouse environmental factors that need to be managed, especially air temperature, humidity, CO2 levels, lighting, and irrigation. To better control energy costs, several interactions need to be avoided. These interactions include running exhaust fans when the heater is on, cycling heaters and fans on and off, and operating fans while adding CO2. With manual controls, some interactions cannot be avoided. However, with a central controller, the control system can be optimized to prevent unnecessary conflicts. A basic controller usually manages heaters and fans to permit the heater to have day and night set points. If the
greenhouse fans are staged, a basic controller may also increase the number of operating fans as internal greenhouse temperatures rise. Sophisticated controllers may have outputs to control heaters, fans, louvers, CO2 enrichment lights, thermal or shade curtains, or irrigation, as well as inputs for temperatures, humidity, CO2 levels, daily light integrals, soil moisture, and a weather station. Proper measurement methods are vital to obtaining accurate temperature readings. Whether using a mechanical thermostat or a sophisticated computer system, a regular tune-up is essential. An inspection by an environmental controls company with specialized knowledge may be necessary. However, any greenhouse manager can perform basic checks. For example, if the ventilation fans are running while the heat is on, then there is a concern. #### Maintenance Consistent maintenance is the most fundamental way to increase energy efficiency. Many tasks are surprisingly simple and cost-effective. By tightening up the cannabis greenhouse, a substantial impact can be made. Over time, greenhouse structures develop holes, cracks, and openings in the walls or roof, which permits the cold air to enter and the warm air to leak out. Fixing these leaks can be made with a can of spray foam and a tube of caulk. Tightening up the greenhouse also improves airflow patterns that contribute to more uniform temperatures and humidity levels. This effort can reduce heating bills by 5% to 10%. Accumulating dust on greenhouse blades, louvers, and safety screens may increase energy usage by as much as 20%. A rag and cleaner solvent can correct this issue. When cleaning, check for any broken fan blades. Bent or malfunctioning louvers as well as drilled holes or gaps around the fan housing may be evident. These louver problems can contribute to higher winter heating bills. Malfunctioning louvers need repair and any holes or cracks should be covered up. Heating maintenance is also crucial to cannabis greenhouse operations to prevent crop loss or inefficient energy costs. Inspecting the heaters on an annual basis will usually cover the maintenance costs in fuel savings and reduce emergency service calls. Heat exchangers and burners, need to be inspected and cleaned annually. In addition, the thermostats require calibration. Soot on boiler heat exchangers or fire tubes can raise energy consumption by 10%. With a central heating system, insulating pipes and ductwork is beneficial. Overall, proper heating system maintenance can decrease energy costs up to 20%. View of greenhouse structure and equipment to show need for maintenance #### **About Nexus** Nexus Corporation has served the greenhouse industry as a top US manufacturer since 1967. With a corporate office and production facility in Northglenn, CO along with an advanced manufacturing plant in Pana, IL, the company brings innovative designs, high quality products, and exceptional customer service to its System 420TM hybrid greenhouse systems.} Nexus has a team of engineers (licensed in 49 states), sales, project management, customer service, and operations professionals dedicated to managing a greenhouse development project from start to finish. The team has expertise regarding the customized design components, efficiency features, and cost management strategies necessary to maximize crop yields and return-on-investment. For more information on greenhouses from Nexus Corporation, click here. ### **Sources** www.nexuscann.com www.nexuscorp.com $\underline{www.nexuscann.com/files/Components\%20of\%20a\%20Marijuana\%20Greenhouse.pdf}$ http://extension.psu.edu/publications/h-86 https://www.extension.org/sites/default/files/2.%20A3907-01.pdf http://www.technologyreview.com/view/528356/how-leds-are-set-to-revolutionize-hi-tech-greenhouse-farming/ https://vtechworks.lib.vt.edu/bitstream/handle/10919/23485/VCE430_101_2001.pdf?sequence=1 $\underline{http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs141p2_023110.pdf}$ # APPENDIX D WELL COMPLETION LOGS # State of California # Well Completion Report Form DWR 188 Submitted 6/20/2018 WCR2018-004761 | Owner's Well Num | ber 2018-1 | Date Work Began 06/06/2 | 2018 Date Work Ended 06/12/2018 | |---------------------------------------|--|-----------------------------|--| | Local Permit Agen | cy Department of Public Health Services - E | Environmental Health Depart | ment | | Secondary Permit | Agency | Permit Number WEL18 | 3-0110 Permit Date 04/24/2018 | | Well Owner | (must remain confidential purs | uant to Water Code | 13752) Planned Use and Activity | | Name FENIXE | ARM, INC, Michael Wright | | Activity New Well | | Mailing Address | 6095 Bodega Avenue | | Planned Use Water Supply Domestic | | | | | VVales Supply Bulliestic | | City Petaluma | | State CA Zip | 94952 | | | | - Well Location | | | Address 6095 | Bodega AVE | | APN 022-200-002-000 | | City Petaluma | Zíp 94952 | County Sonoma | Township 05 N | | Latitude | N Longitude | | W Range 08 W | | Deg. | Min. Sec. | Deg. Min. Sec. | Section 21 | | Dec. Lat. 38,26 | | -122.7453287 | Baseline Meridian Mount Diablo Ground Surface Elevation | | Vertical Datum | Horizontal Datu | | Elevation Accuracy | | Location Accuracy | the state of s | | Elevation Determination Method | | Location | | | | | | Borehole Information | Tarana y | Vater Level and Yield of Completed Well | | Orientation Ver | rtical Speci | ly II | first water 70 (Feet below surface) | | Drilling Method | Direct Rotary Drilling Fluid Other | - Mud Depth to | | | | | Water Le | | | Total Depth of Bo | oring 300 Feet | Estimate Test Len | | | Total Depth of Co | ompleted Well 300 Feet | 1.1 | be representative of a well's long term yield. | | DECEMBERS ON | | ANTEN DA ESSE EN LA | CONTRACTOR OF THE CONTRACTOR OF TAXABLE PARTY. | | Mat. M. M. | i de la company comp | eologic Log - Free F | Om | | Depth from
Surface
Feet to Feet | | Descrip | tion | | 0 3 | Top soil | | , | | 3 12 | Gray sandy clay | | | | 12 33 | Brown sandy clay | | | | 33 47 | Blue sandy clay | | | | 47 49 | Stone and sandy clay | | | | 49 90 | Blue sandy clay | | | | 90 91 | Soft stone | | - 11 dd | | 91 93 | Blue sandy clay | | | | 93 95 | Blue sandy clay, stone and sea shell | | | | 95 96 | Stone | | | | 96 300 | Blue sandy clay stone with soft ledges | | | # Well Permit Application wls-031 | 6095 Bodega Avenue | WELI8-0110 | |---|--| | Site Address CA 94952 | Permit Number 022–200–002 | | City/Town State Zip | Assessor's Parcel Number
Les Petersen Drilling & Pump, Inc | | Owner Name
same as well location | Well Driller Name 5434 Old Redwood Hwy | | Mailing Address | Mailing Address | | City/Town State Zip | Santa Rosa CA 95403 City/Town State Zip | | 415-637-7516 | 261084
License Number | | Contact Person | 545-0246 573-9483 | | | | | addition to the information required on the Minimum Standard Sit existing well(s) location(s), GPS coordinates of proposed well, sew | mation provided by the applicant. A site plan
<u>must accompany</u> this application. In e Plan (Form CSS-019), the site plan shall also include the proposed well location, or mains and laterals, and other potential sources of contamination. If an inadequate the current hourly rate will be assessed. The precise site location of the proposed | | INDICATE TYPE AND NUMBER OF PROPOSED WELLS/BORING | 3S: | | indicate use: A Residential D Community Mirriga
Reason for new well: | ation 🗅 Industrial | | | nstruction Reason for Class II: | | | onitoring [] Cathodic [] Dewatering clinometer [] Other: | | [] Performance Well [] Piezometer [] Indian number of wells on property: | Number inactive: Number abandoned: | | Well located within an existing public water system boundary: Yes | | | CONSTRUCTION PROPOSED: | 1 No 2 Name of System. | | Casing: Dameter: 105% / Gauge: 200 | Material: PVC Gravel Pack Conductor: Yes O No Oxx | | Annular Space: Size: 211 Depth of Seal: | 100 ft Seal Material: Bentonite | | Method of Disinfection: Method of Disinfection: Access Openii | | | DESTRUCTION PROPOSED: Well Diameter: | Well Depth: Well Casing: | | Method of Destruction: | 1 | | WORKER'S COMPENSATION DECLARATION I hereby affirm under penalty of perjury one of the following declarations: I have and will maintain a certificate of consent to self-insure for worker's cas provided for by Section 3700 of the Labor Code, for the performance of the this permit is issued. I have and will maintain worker's compensation insurance, as required by State Labor Code, for the performance of the work for which this permit is issued compensation insurance carrier and policy number are: Carrier Everest National Ins Co | work for which Commencing this work. I will furnish the Permit and Resource Management Department and the owner a copy of the State Well Completion Report action 3700 of within thirty (30) days in order to obtain final approval on this well as | | No. 7600017102181 (This section need not be completed if the permit is for one hundred dollars (\$ | 3/20/18 Signature of Well Driller Date | | WARNING: FAILURE TO SECURE WORKER'S COMPENSATION COVER
CIVIL FINES UP TO ONE HUNDRED THOUSAND DOLLARS (\$100,000), IN
3706 OF THE LABOR CODE, INTEREST, AND ATTORNEY'S FEES. | AGE IS UNLAWFUL, AND SHALL SUBJECT AN EMPLOYER TO CRIMINAL PENALTIES AND ADDITION TO THE COST OF COMPENSATION, DAMAGES AS PROVIDED FOR IN SECTION | | • DO NOT WRITE BELOW 1 | THIS-LJNE - To Be Completed by PRMD Staff € | | Site approved by: Date | 16160 | | Finaled by: | Date: GW Zone: 1 (2)3 4 | | comments Site #1+#2 approved | (not#3) | | | y a se | | | | Casing | 3 | | | | | |-------------|--------|---------------------|-------------|----------|--|-------------------------------|---------------------------------|-----------------|---------------------------------|-------------| | Casing
| | m Surface
o Feet | Casing Type | Material | Casings Specifications | Wall
Thickness
(inches) | Outside
Diameter
(inches) | Screen
Type | Slot Size
If any
(inches) | Description | | 1 | 0 | 120 | Blank | PVC | OD: 5.563 in. SDR: 21 Thickness: 0.265 in. | 0.265 | 5.563 | | | | | 1 | 120 | 300 | Screen | PVC | OD: 5,563 in. SDR: 21 Thickness: 0,265 in. | 0.265 | 5,563 | Milled
Slots | 0,032 | | | | Annular Material | | | | | | | | | | |---------------------------------------|------------------|------------|-------------------|------------------|----------------|--|--|--|--|--| | Depth from
Surface
Feet to Feet | | FIII | Fill Type Details | Filter Pack Size | Description | | | | | | | 0 | 3 | Cement | Other Cement | | | | | | | | | 3 | 100 | Bentonite | Other Bentonite | . = | | | | | | | | 100 | 300 | Other Fill | See description. | | 8X16 AND 12X20 | | | | | | ### Other Observations: | | В | orehole Specifications | |---------------------------------------|-----|----------------------------| | Depth from
Surface
Feet to Feet | | Borehole Diameter (inches) | | 0 | 300 | 11 | | | Certification | Statement | | | | | | | |--|-------------------------------------|-------------|-----------|-------------|--|--|--|--| | I, the undersigned, certify that this report is complete and accurate to the best of my knowledge and belief | | | | | | | | | | Name LES PETERSEN DRILLING & PUMP INC | | | | | | | | | | | Person, Firm or Corporation | | | | | | | | | 54 | 34 OLD REDWOOD HWY | SANTA ROSA | CA | 95403 | | | | | | | Address | City | State | Zip | | | | | | Signed | electronic signature received | 06/20/2018 | 261084 | | | | | | | | C-57 Licensed Water Well Contractor | Date Signed | C-57 Lice | ense Number | | | | | | CSG# | State Well Number | | - | Site Code | | | Local Well Number | | | | |------|-------------------|-----------|---|-----------|--------|--------|-------------------|----|--|--| | | | | N | | | | ŀ | w | | | | Lat | itude Deg | g/Min/Sec | ; | Lo | ngitud | le Deg | /Min/Se | ec | | | | ΓRS: | | | | | | | | | | | | APN: | | | | | | | | | | | | REGIONAL WATER POLLUTIONTE OF ACCT | RILLERS REI
7, 7078, Water Code)
CALIFORNIA
J38 | sk all | Nº 2910 State Well No. Other Well No. | |--|--|---------------------------|--| | | | - 11 | · · · · · · · · · · · · · · · · · · · | | (A) OWNI | (11) WELL L | | ·
 | | Name | Total depth I55 | ft. Depth | of completed well ft | | Address | 1 | | f material, and structure. | | | | 3 <u>a top</u>
5 "hard | | | (a) = = = = = = = = = = = = = = = = = = = | | | dy yellow clay | | (2) LOCATION OF WELL: Country Sonoma Owner's number, if any— | | · San | dy yours a cady | | 7.4.7 | " | ** | | | R. F. D. or Street No. 0410 BOGOGA AVE., FEURIUMA. | I7 " I5 | 55 · blue | sandstone | | about 6 miles week of Datalane | | | | | about 6 miles west of Petaluma on | 5.7 | | | | Bodega Ave. | 1 " | *1 | · | | (a) The or wrong (i i) | ** | | | | (3) TYPE OF WORK (check): | | e. | | | New well Deepening Reconditioning Abandon | ** | | | | If abandonment, describe material and procedure in Item 11. | ** | *1 | | | (4) PROPOSED USE (check): (5) EQUIPMENT: | *** | | | | Domestic Industrial Municipal Rotary Cable | | 41 | | | Irrigation Test Well Other Dug Well | rt | | | | | 11 | 11 | | | (6) CASING INSTALLED: If gravel packed | · c | ** | | | SINGLE DOUBLE Gage Diameter from to | · c | | | | From ft. to PS Tt. 8" Diam. 3/I6 Wall of Bore ft. ft. | ec | r. | | | * 0 BO 0 B 0 B 0 B | | | | | 20-ft. of 8" pipe in well " " | K+ | 117
 | | | 11 11 11 11 11 11 11 11 11 11 11 11 11 | | 111 | | | , n q. a a a | | •• | | | Type and size of shoe or well ring 31 forged Size of gravel: | 40 | | | | Describe joint | 44 | | | | | ** | | | | (7) PERFORATIONS: | • | 41 | | | True of perforator used XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | Re | 11 | | | Size of perforations in., length, by in. | 44 | ** | | | From ft. to ft. Perf. per. row Rows per ft. | 44 | 41 | | | | | | | | | ** | | | | | *** | | | | | | *1 | | | (8) CONSTRUCTION: | ėc . | " H #F0 | D America | | Was a surface sanitary seal provided? Yes No To what depth ft. | Ę¢. | | IK OFFICIAL USE ONLY | | Were my strata sealed against pollution? Tes I No If yes, note depth of strata | (c | 41 | · · · · · · · · · · · · · · · · · · · | | From ft. to ft. | ** | 41 | | | * 1 | de . | 11 | , | | Method of Sealing | Work started I/7 | 19 5 | 7. Completed 1/10 19 5 | | | WELL DRILLER'S | STATEMENT: | and the second of | | (9) WATER LEVELS: | This well was dril | lled under my juri | sdiction and this report is true to the best o | | Depth at which water was first found little at I2 ft. | my knowledge and be | | low | | Standing level before perforating ft. hading level after perforating 4 ft. ft. | *************************************** | -Well Dril | | | ading level after perforating 4 IT. ft. | 1 | erson, firm, or corpor: | A A | | (10) WELL TESTS: | | | | | Was a pump test made? Yes No If yes, by whom? | 99 | 7.7 | | | Yield: 225 gpn gal./min. with 140 ft. draw down after 2 hrs. | [SIGNED] | J- Keyl | Well Driller | | Temperature of water Was a chemical analysis made? Yes S No | License No. | 3160 | Dated 5/I8 , 19 57 | | Was electric log made of well? Yes No | 95689 3-54 50M QUIN | | DWR FORM NO. 246 (REV. 3-54 | | was difference to R winner or went. The Thirty | | | Secret Annie in a man Annie a gant | #### ORIGINAL Address Bodega Rd. (3) TYPE OF New well 🗌 From Describe joint From From Method of Sealing Type of perforator used of perforations ### VATER WELL DRILLERS REP (Sections 7076, 7077, 7078, Water Code) # EARCHER ! | File Original, | Duplicate and | Triplicate with the | |----------------|---------------|---------------------| | RECTONA | T WATER | POLITICION | (2) LOCATION OF WELL: WORK Domestic 🔲 Industrial 🔲 Municipal 🗍 Irrigation Test Well attriculture Diam ٠. (4) PROPOSED USE (check): (6) CASING INSTALLED: None SINGLE 🔲 DOUBLE 🗌 Type and size of shoe or well ring (7) PERFORATIONS: ٠,, (8) CONSTRUCTION: (9) WATER LEVELS: Depth at which water was first found ling level after perforating (10) WELL TESTS: Was a pump test made? 🔲 Yes Was electric log made of well? [] Yes [No Temperature of water Standing level before perforating Was a surface sanitary seal provided? Yes No To what depth Were any strata scaled against pollution? Yes D No If yes, note depth of strata No If yes, by whom? Deepening 🗖 If abandonment, describe material and procedure in Item 11. Owner's number, if any-R. F. D. or Street No. 4381 Middle Two Rock Rd.: 400 ft. North of Middle Rwo Rock Rd.; 100 ft. West of (check): Abandon 🔲 to ft. 12 44 ft. ft. ź٤. (5) EQUIPMENT: Rotary Dug Well If gravel packed Cable (11) WELL LOG: | Do | Not Fill In | |---------------|-------------| | N_{\bullet} |
52699 | N/8W-2198 | EGIONAL WATER POLLUTION | STATE OF CALLEODAUA | | |---------------------------|---------------------|-----| | ONTROL BOARD No | STATE OF CALIFORNIA | 100 | | nsert abbrobriate number) | | | Saw Reconditioning [Gage wall Wall .. •• .** Diameter of Bore Size of gravel: in., length, by Perf. per row ** ** ** u 26 ft 14 ft. draw down after Was a chemical analysis made? 🔲 Yes 💋 No | Total depth | 30 | | fe. | Depth o | f compl | eted well | | 52 | | ft. | |--------------|--|-------------|------------|-----------------------------|-------------|----------------------------|---------------------------------------|---|---------------|-------------| | Formation: D | | color, c | baract | er, size of | material | , and stru | ciure. | | | | | 22 | ft. to | 52 | ft. | TT 0 1111 | . hor | -d -al- | | -17 | 1 | 7.3 | | | •• | 02 | | very
in f | ner | blue | amsn | 9 | pou | lders | | | | ···· | 17 | TH T | 77.111 | DIG | Sau | ц. | | | | | • • | | ** | | | | | | | | | | " | | ., | | | | | | | | | | | | ٠, | | | | | | | | | | | | •• | | | | | | | | | | £4 | | * 1 | | | | | | | | | | " | - | ** | | | | | | | | | | 11 | | +1 | | | | | | | | | | " | | ** | | | | | | | | | | ** | | ٠. | | | | | | | | | | 11 | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | " | | | | | | | | | | ** | | ··· | | | | | | | | | | '' | | ** | | | | | | | | | | ** | | ** | | | | | | | | | | •• | | | | | | | | | | | | | | | | | | | <u> </u> | | | | | | | | | | | | | | | | | ** | | | | | | | | | | | | tı | | •• | | | | | | | | | | t. | | ., | | | | | | | | | | ······································ | · | ٠. | | | | | ~· <u></u> | | - | | | ** | | 41 | | | | | | | | | - | " | | ٠. | | - | • | | | | | | | ** | | | | | | | *************************************** | ************* | - | | | ** | | ** | | | | | | | | | | 11 | | ** | | | | | | | | | | 11 | | ** | | | | | · | | | | | 41 | | " | | | | | | | | | | | | ** | | | | | | | | | | | | ** | | | | | | | | | | t1 | | 10 | Eno | ACC | iniai | HCE | _ ∩NI | V | | | | ** | | " | TON | UFF | ICIAL | U2F | OI T | - L | | | | | | | | | | | | | | | | | | ** | | | | | | | | | | | | | | | · | | | | | | | | | | | | ***** | | | | | | | *1 | | 1.44 | | - | | , | | | | | Work started | Aug | ust | 8 | 19 5 9 | , c | ompleted : | A to the | st | 11 | 19 59 | | | 57 | 1288 | 7. | 7.8 | 1.2.2. | مر
المراجعة
المراجعة | | | | | | WELL DR | | | | | liction | and this | rebort | is tru | e to th | e hest of | | my knowled | lge and b | elief. | | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | 0, | | NAME | BALI | ARD | & I | COOTE | | | | | | | | Address | 4625 | Person, 1 | im, o | r corperati
Z Lan | | : | (Typ | ed or pr | inted) | | | Address | Seba | | | | | | | | | | | | | | , V , A. S | | <i></i> | 51 | | | // | 7 | | [SIGNED] | No | le | 24 | <i>(</i> | Well B | iller | 10 6 | ?A | 14. | | | License No. | 185 | 456 | | | Dated. | | Sep | t. 6 | 5, 1 | 959 | | 57025 6-57 | 50M QUIN | ∆ spo | | | | | D! | WR 18 | 8 (RE) | 7. 3.54) | ### **ORIGINAL** **File with DWR** Was electric log made? DWR 188 (REV. 7-76) STATE OF CALIFORNIA Do not fill in # THE RESOURCES AGENCY **DEPARTMENT OF WATER RESOURCES** No. 066438 4-11-79 | of Intent No | WATER WELL DI | RILLERS REPORT State Well No | |--|---|---| | Permit No. or Date 139-79 | | Other Well No. 5N 8W-21 | | (2) LOCATION OF WELL (See instruc | tions): 22-330-08 | (12) WELL LOG: Total depth 185 ft. Depth of completed well 185 ft. from ft. to ft. Formation (Describe by color, character, size or material) O - 3 Top soil 3 - 28 Yellow & Brown Sand 28 - 42 Blue Sand Seams in Brown Sandstor | | Well address if different from above 6025 Bodes | Well Number | 42 - 130 Clay Blue Sand w/Sandstone Ledges | | Township Petaluma Range | | 130 - 185 Clayee Blue and, Traces of Shell | | Distance from cities, roads, railroads, fences, etc. | | - & Sandstone Ledges | | Total of Total , Tull value, T | | - 1111 | | | | - \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | | - \\ | | | (3) TYPE OF WORK: | | | | New Well 💢 Deepening 🗌 | | | | Reconstruction | -11 | | | Reconditioning | | | | Horizontal Well | (1) - (1) | | | Destruction [(Describe destruction materials and | 10- | | | procedures in Item 12 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | (4) PROPOSED USE | | | | Domestic | | | | Irrigation | 1-11 | | • | Industrial | | | | Test Well | <u> </u> | | | Stock | 10) - 100 | | | Municipal | 3 | | WELL LOCATION SKETCH | Other | p -60 | | (5) EQUIPMENT: (6) GRAVET | PACK: | Q- 9 | | Rotary Reverse No | Size Size Dea | - (1) | | Cable | | | | Other Bucket Racket from | 30 185 4 | 1/// - | | (7) CASING INSTALLED: (8) PERFOR | _ // / | <u> </u> | | Steel Plastic Concrete Type of period | ation or size of screen | 9 - | | From To Dia. Carge of From | To Sign | | | It. It III. Wall | 85 8 x | 3 | | 0 185 65 CL160 65 \\ 105 | 185 | <u> </u> | | 145 | 1 CH 10 11 | | | | 1 Hart 1 | - | | (9) WELL SEAL: Was surface sanitary seal provided? Yes 况 No □ | If yes, to depth 30. | | | A contract of the | - / - | | | Were strata sealed against pollution? Yes on pa | ck | Work started 4-10-79 19 Completed 4-11-79 19 | | (10) WATER LEVELS: | | WELL DRILLER'S STATEMENT: | | Depth of first water, if known | ft. | This well was drilled under my jurisdiction and this report is true to the best of m | | Standing level after well completion 40 | ft. | Signed Gerald G. Thompson by Mary E. Thompson | | (11) WELL TESTS: Was well test made? Yes ☐ No ☐ If yes, M | y whom? Weeks | (Well Driller) | | Type of test Pump Bailer | | NAME Weeks
Drilling and Pump Company | | Depth to water at start of test 40 ft. | At end of test 175 ft COOL | (Person, firm, or corporation) (Typed or pentent) | | gai/min arternous | Water temperature | Auto-55 75 05470 | | cal analysis made? Yes No No If yes, by | y whom? | City Sebastopper Ca. (// The American Company | No V If yes, attach copy to this report #### Do Not Fill In STATE OF CALIFORNIA # THE RESOURCES AGENCY #### REPARTMENT OF WATER RESOURCES eduin this copy CONFIDENTIAL LOGATER WELL DRILLERS REPORT 91008 | State Well No | 0. | 2000年度 | |---------------|-----|---------| | Octor Wall N | ,5N | /8W-214 | (11) WELL LOG: Total depth 200 ft. Depth of completed well Formation: Describe by color, character, size of material, and structure (2) LOCATION OF WELL: (3) TYPE OF WORK (check): New Well Deepening [] Reconditioning [Destroying [If destruction, describe material and procedure in Item 11 (5) EQUIPMENT: (4) PROPOSED USE (check): Domestic 📈 Industrial 🗌 Municipal 🔲 Rotary Irrigation 🔲 Test Well 🗌 💎 Other 🗌 Cable Other (6) CASING INSTALLED: If gravel packed OTHER: SINGLE X DOUBLE Diameter To From From οř Wall Diam. Bore ft. ft. fτ. ft. 01 (7) PERFORATIONS OR SCREEN machen Type of perforation or name of screen Perf Rows To From per per ft. in. x in. fr. ft. row 104 (8) CONSTRUCTION: Was a surface sanitary seal provided? Yes No 🗌 Were any strata scaled against pollution? Yes [ft. to This well was drilled under my jurisdiction and this report is true to the best of my knowledge and belief. WELL DRIZER'S STATEMENT: (9) WATER LEVEES: Depth at which water was first found, if kn Standing level before perforating, if known Standing level after perforating and develop (10) WELL TESTS: No X Was electric log made of well? Yes SKETCH LOCATION OF WELL ON REVERSE SIDE Water Code Sec. 13752 COUNTY OF SCNOMA PUBLIC HEALTH SERVICE 3313 Chanate Road, Santa Rosa, California 95404 Teléphone 527-2711 Page 2 of 2 pages 91088 Permit no. 153-25 WELL PERMIT APPLICATION (Plot Plan or Sketch) Well address from Milley Land Hyur Diet n Neiley Range P. #21-331-04 Indicate below the exact location of well with respect to the following items: property Indicate below the <u>exact location</u> of well with respect to the following items: property lines, water bodies or water courses, drainage pattern, roads, existing wells, sewers and private sewage disposal systems. INCLUDE DIMENSIONS. State Well No. ORIGINAL COMPIDENTIAL LOG THE RESOURCES AGENCY File with DWR Code Sec. 13752 DEPARTMENT OF WATER RESOURCES # WATER WELL DRILLERS REPORT | 11. ITOUU | Nº | 1 | 43 | 889 | |-----------|----|---|----|-----| |-----------|----|---|----|-----| |) | | • | • | Other Well No.57 | 1/8W-21 | |--|--------------------|------------------------------|--|---|------------------| | . ′ | | · | (11) WELL LOG: | | <u> </u> | | 1 | | | Total depth 203 | ft. Depth of completed well |
ft. | | -
1 | | | | character, size of material, and structure | : | | - | | - | | ft. zo | fc. | | (2) LOCATION OF WELL: | ger's number, if a | nv. | 0-85 H | lard brom par | deln | | Township, Range, and Section 4371 Me | adle T | wo Orab Ad | 85-187 | Blue yaron Ro | restone | | Distance from cities, roads, railroads, etc. | -190 | -15 | | | | | | | *** | 187-203 | arwy policiets | VLYCU | | | | Destroying 📋 | | d and d | | | If destruction, describe material and procedure | | | | | | | (4) PROPOSED USE (check): Domestic Industrial Municipal | | EQUIPMENT: | | | *** | | Irrigation Test Well Other | | otary 🔲 | · | | | | inigation [] Test went [] | — , | ther | | <u>.</u> | | | (6) CASING INSTALLED: | <u> </u> | | | | | | STEEL: OTHER: | If gra | avel packed | | | | | SINGLE DOUBLE | • | | | · | <u> </u> | | Gage | Diameter | 1 | | 4 | | | From To or | of | From To ft. | | | | | ft. ft. Diam. Wall | Bore | ft. ft. | <u> </u> | <u> 1865 - Arriva Britania, propinsi di Arriva.</u>
Arriva | | | 0 70 6 180 | | | | | | | | | . , | | | · · | | Size of shoe or well ring: | Size of gravel: | | 35 - 4 | | | | Describe joint WOLLK | | | | | | | (7) PERFORATIONS OR SCRE | EN: | | | | | | Type of perforation or name of screen | | | | | | | Perf. | Rows | V. | | · | | | From To per | per | Size | | | | | ft. row | ft. | in. x in. | | | | | | | | | | · · | | | A | | | | | | | | | | | | | | | 1.45 | | | | | (8) CONSTRUCTION: | | | | | | | Was a surface sanitary seal provided? Yes No | ☐ To wh | at depth 🕰 🎉 ft. | | | <u></u> | | Were any strata sealed against pollution? Yes . N | % □ | If yes, note depth of strata | | | <u> </u> | | From ft. to ft. | | | Book | 1=77 may 20 | | | From ft. to ft. | | | Work started | 19 , Jomple A 164 060 | | | Method of sealing | | | WELL DRILLER STATE This well was drilled to | under my jurisdiction and this report is | true to the best | | (9) WATER LEVELS: Depth at which water was first found, if known | | ft. 21/15 | of my knowledge and beli | | : | | Standing level before perforating, if known | | ft. | NAME PITTE | a & Dulliam | * | | Standing level after perforating and developing | | fr. 30 | | erson, firm or corporation) (Typed or printed | 2 | | (10) WELL TESTS: | : | 1. 4. | Address 5 | with West of | 2 West | | | es, by whom? | Miller | Sant | areas com | | | d: 4 gal./min. with 90 | ft. drawdown af | ter hrs. | [SIGNED] | the Cultile | . 54 | | Temperature of water Was a chemical | analysis made? | Yes 🗇 No 🔯 | 500 | SING Pon | 77 77 | | Was electric log made of well? Yes No No | If yes, attacl | 1 сору | License No. | by Dated Matt | <u> </u> | COUNTY OF SONOMA PUBLIC HEALTH SERVICE 3313 Chanate Road Santa Rosa, California 95404 Telephone 527-2711 Page 2 of 2 pages Permit no. 639-77 WELL PERMIT APPLICATION (Plot Plan or Sketch) Well address 4381 Middle Jun Port PA Attaliana A.P. #022-190-15-1 Indicate below the exact location of well with respect to the following items: property lines, water bodies or water courses, drainage pattern, roads, existing wells, sewers and private sewage disposal systems. INCLUDE DIMENSIONS. ORIGINAL CONFIDENTIAL LOG ORIGINAL CONFIDENTIAL LOG File With DWE THE CODE Sec. 13752 # THE RESOURCES AGENCY ## DEPARTMENT OF WATER RESOURCES # WATER WELL DRILLERS REPORT Nº 143891 | | | | ••••• | | | (11) WELL LO | G: | | | | |-----------------|---|-----------------|--|-----------------|--------------------|---|---------------------|-----------------------------------|---------------------------------------|--| | | | | | | | 4 1 | \~~ | | 2.2 | | | | | | | _ | | Total depth Formation: Describe by c | | Depth of comple | | ft. | | | | | | _ | | Formation: Describe by a | color, competer, si | ize oj material, and
ieno O AN | la Tage | į̇́τ. | | (2) LOQ | ATION O | OF WELI | L: | | | | | 7 | | | | County | 720 | | Owner's num | oer if any | | 21-108 | 13/ | un | sanda | time | | | ge, and Section | rem 1) | aller 1/2 | moh. | | ,,,, | | 1 | | 4 | | Distance from o | cities, roads, rai | Bods | ga K | ou de | * #2. | 108-200 | 5 1 | Zue. | cond | alone | | Juan | Umu | ب | 22- | 200- | 02 | | | | - | | | (3) TYP | ∸ | * | - | - | | 200-22 | <u> </u> | gray. | sand | elme | | New Well | | | econditioning | | ing 📋 | | <u> </u> | / 0 | | | | | | | ocedure in Item | | | 42 J. 42 | | | | · · · · · · · | | | POSED U | | | | JIPMENT: | <u> </u> | | | | | | | Industi Test W | | Other 🗌 | Rotary
Cable | | | | · | | | | imgation | ∐ lest w | en [| Other [| Other | . 🗎 | | | | | | | (6) CAS | ING INS | TALLED | | 01.101 | · | | | | | | | STEE | | OTHER: | | If gravel pa | cked | , | | | | | | | DOUBLE | | | • | | | | | | | | ر
سور
ا | | | D. | ı | 1 | | | | | | | From | fo | | Diamet | From | То | | *. | .2 | | | | ft. | fr. I | Diam. W | all Bore | ft. | ft. | Company of the second | <u></u> | 4 1 to 12 15 | era in a | | | 0 | 100 | 8 18 | 8 | | | | | | | | |) | | | | | | | | • | : | | | | -3 | | 5 | <u> </u> | 1 | | | | | | | Size of shoe or | well ring: | 701 | Size of gr | avel: | | | | eda . | | | | Describe joint | FOR ATIO | NIC OP | SCREEN: | | | 1 | | | | | | | FORATIC
ation or name of | | SCREEN: | | | | | | · · · · · · · · · · · · · · · · · · · | | | Type of perior | ation of manie of | | | | 3 | | | | . <u>-</u> | The state of s | | From | То | Perf
per | į. | s | Size | | | | | - | | fr. | ft. | row | I - | . l | n. x in. | | | | | : | | | 120 | ne | | | | | | | | <u> </u> | | | 10 | | | | | | | | | <u></u> | | | | | | | | | | | | | | | | | <u> </u> | ` * | ISTRUCT | <u> </u> | | | 9 7 | | | | | | | | sanitary seal prov | - | No 🗆 | To what depth | | | | <u> </u> | · · · · · · · · · · · · · · · · · · · | | | | a sealed against p
ft. to | | □ No □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ | 11 yes, no | te depth of strata | 1- | | | | | | From
From | ft. to | | t | | | Works A Sulp & | 1 4,277. | Complete Complete | 41 19 - J | フラ | | Method of seali | | Mura | × | | | WELL DRIVER'S | STATEMENT | 111 | | | | | TER LEV | ELS: | | | | This well was dril | | jurisdiction and | this report is t | rue to the best | | • • | h water was fire | | own | ft. | 108 | of my knowledge and | belief. | 4 | 0 * | | | Standing level | before perforat | ing, if known | | ft. | | NAME / | Uly + | pull | ean | | | Standing level | after perforation | ng and developi | ing | ft. | 100 | | (Person, firm/ | or corporation) (| Typed or printed) | 2.1 | | (10) WE | LL TEST | S: | | 1 | | Address | mush | RISTA | prop | | | was pump test | made? Yes 🔀 | No 🗆 | If yes, by who | om? Are | ju _ | Man | the UY | can ! | va | · | | <u> 14: 5 2</u> | _ | n. with | | down after | hrs. | [SIGNED] | well | The King | Well | | | Temperature of | | | hemical analysis n | | No No | 7 | 994116 | 2() | . ۱۳۰۶ .
معادر | 7つ | | Was electric lo | s electric log made of well? Yes 🔲 No 🐧 If yes, attach copy | | | | | License No. | 00077 | _Dated | me | <u> </u> | SKETCH LOCATION OF WELL ON REVERSE SIDE CONDENTIAL LOG Water Code Sec. 13752 COUNTY OF SONOMA PUBLIC HEALTH SERVICE 3313 Chanate Road Santa Rosa, California 95404 Telephone 527-2711 Page 2 of 2 pages WELL PERMIT APPLICATION (Plot Plan or Sketch) Well address Will Welly Warch. Utallema A.P. #22-200-02. Indicate below the exact location of well with respect to the following items: property lines water bodies or water courses drained notificate to the following items: lines, water bodies or water courses, drainage pattern, roads, existing wells, sewers and private sewage disposal systems. INCLUDE DIMENSIONS. Potaluma - Wally Fard Hyw. | ORIGINAL
File with DWR | W | STATE OF VELT. COMPL | | NIA
N REPORT | 05NO | 8 w21 1 | | |--|---|---------------------------------------|---------------------------------------|---|--|--|--| | Page of | • | Refer to Inst | ruction Pam | iphlet | STA | TE WELL NO STATION NO. | | | Owner's Well No | | No. | 8126 | 310 | | | | | Date Work Began | 8/16/00 Enc | ded <u>8/17/00</u> | <u> </u> | | LATITUDE | LONGITUDE | | | Local Permit Ag | | resource. | | ogemend | <u>- </u> | APN/TRS/OTHER | | | Permit No. 🔽 | | Permit Date | <u>5/89/0</u> | 0 0 | | | | | | CEOLOGIC LO | G | | | | VNER - | | | ORIENTATION (∠) | VERTICAL HORIZO | NTAL ANGLE (| SPECIFY) | | | | | | | DRILLING COTOMA | GW FLUID | | | | | | | DEPTH FROM
SURFACE | DESC. | CRIPTION | | | | | | | Ft. to Ft. | 41 | , grain size, color, etc. | 2.3.2.2 | S -1 | WELL LOC | EATION———— | | | 3 55 | Henom sav | vq z pous | | ddress \$02 | M | · · · · · · · · · · · · · · · · · · · | | | 22 10 | plush deno | ACCOUNT TO A | | lity | 6.000 B | | | | 1. | SOWCISTONE | M OGGETIO | | | 1 Page 190 P | Parcel 012 | | | 110 220 | | som d stane | | | | ection | | | HO FOR | CCCC SIAME | JONEO STURIES | 7.7.7. | atitude | | ongitude WEST | | | | CUNCHERNO | & EPM | | DEG. MI | N. SEC. | DEG, MIN. SEC. | | | 926 840 | Direct Citotia | anno Chas | | Loca | ATION SKETCH — | ACTIVITY (×) | | | 220 200 | Same North | STATE OF | · · · · · · · · · · · · · · · · · · · | } | | MODIFICATION/REPAIR | | | | Land Mod | Cemented (| arranel | 1000 | ת מ | Deepen | | | | AD BOM | COMPANICAL | J | por | owell | Other (Specify) | | | AUD DED | COLONIA LINE | n Francisco | - · | T C | DO THE | DESTROY (Describe | | | apply and | diale | TT 0 T WILLIAM | *** | | C SIETU WELL | DESTROY (Describe Procedures and Materials Under "GEOLOGIC LOG") | | | | 3000 | | | , , | FILEBOW LE | PLANNED USES (∠) | | | | | | | £-100->1 | & they may | WATER SUPPLY | | | | | | ; | | <u> </u> | Domestic Public Irrigation Industrial | | | - | 1 | · · · · · · · · · · · · · · · · · · · | | 0.5 | । भी मि | MONITORING | | | | 1 | | ≥ | 100 | n nb-i | TEST WELL | | | <u> </u> | 1 | | | | s UUI | CATHODIC PROTECTION | | | \ | 1 | | | A. S. | 69 11 H | HEAT EXCHANGE | | | 7 | · | | | is the | i na i | DIRECT PUSH | | | | | <u> </u> | _ | D'S | 1 'Fi | VAPOR EXTRACTION | | | | | | | • | d ni | MIDDLE SPARGING - | | | | <u> </u> | | | Illustrate on Donariba I | SOUTH Strang Road | | | | | | | | Fences, Rivers, etc. and | Distance of Well from Road
l attach a map. Use addition
E ACCURATE & COMPI | is, Buildings, mal paper if | | | - | 1 | | | | | | | | | 1 | | | | | OF COMPLETED WELL | | | <u> </u> | 1 | | | | ATER 75 (Fl.) BE | LOW SURFACE | | | <u> </u> | 1 | | | DEPTH OF STATIC | 20 (Ft.) & DATE | MEASURED SITION | | | | t | | | ESTIMATED YIELD * | | EST TYPE OUT IT | | | TOTAL DEPTH OF | BORING 250 (Feet) | · | | TEST LENGTH | (Hrs.) TOTAL DRAW! | DOWN 250 (FL) | | | | COMPLETED WELL | SO_(Feet) | Ì | | sentative of a well's lon | | | | TOTAL DELTH O | 00/// | | | | | | | | DEPTH | BODE. | CASING (S) | | | DEPTH
FROM SURFACE | ANNULAR MATERIAL | | | FROM SURFACE | BORE-
HOLE TYPE (×) | INPERIMENT | CALICE | SLOT SIZE | FHOM SUHFACE | CE- BEN- TYPE | | | | DIA. BRANK SCHEEN (seeponl) | MATERIAL / INTERNAL DIAMETER | GAUGE
OR WALL | IF ANY | Ft. to Ft. | MENT TONITE FILL (TYPE/SIZE) | | | Ft. to Ft. | | (Inches) | THICKNESS | <u> </u> | | (\(\times\) (\(\times\) (\(\times\) | | | 0 100 | 10" V F | 480 PMC 54 | ाह्य | | 0 4 | | | | 100 80 | 84 M | N M | 44 | | 4 100 | | | | 138 250 | 84 4 | y u | M | .032" | 100 250 | 19/20 \$ 8/K Jane | | | | | , | | | | | | | 1 | | | <u> </u> | | 1 | | | | i | | | <u> </u> | | TOTAL SIMILARINA FIRE | <u> </u> | | | ATTA | CHMENTS (Z) | L the understand of | ortify that thi | CERTIFICA
is report is complete | TION STATEMENT | best of my knowledge and belief. | | | Geolo | I, the undersigned, certify that this report is complete and accurate to the best of my knowledge and belief. | | | | | | | | Well 0 | onstruction Diagram | NAME NOTH | CORPORATION . | TENSEN
(TYPED OR PRINTED) | DRALLING | | | | Geophysical Log(s) | | | | | ERD STOOM CA 954 | | | | Soli/M | ater Chemical Analyses | | WA EV | 7 (SIN) | <u>164 20 cm/</u> | SEBA STOPAL CAT TOTAL | | | Other | | ADDRESS | U) | . (| · . | Alman 340A54 | | | ATTACH ADDITIONA | , information, if it exists. | Signed WELL DRILLER/AUTHU | RIZED REPRESE | WIN TOWN | DA | TE SIGNEE C-57 LICENSE NUMBER | | ### ORIGINAL File Original, Duplicate and Triplicate with the (Sections 7076, 7077, 7078, Water Code) 21 H? Do Not Fill In 80477 | - | 7. | 10 | 8 | |---|-----|-----|----| | 1 | T.4 | 1 - | ح. | | REGIONAL | WATER | POLLUTION | CTATE | ~= | CALLEON | |----------|-------|-----------|-------|----|----------| | | | 7 | STATE | OF | CALIFORN | State Well No... | CONTROL BOARD No. 1 | SIATE OF | CALIFOR | 十 | 603 ° | her Well No | 1/ 22M | |--|---------------------------------------|--------------|-----------------------------|---|---|------------------------| | | | (11) W | ELL LOG: | · | <u>,, , , , , , , , , , , , , , , , , , ,</u> | | | Nam | | 1 | 160 | | 11 | 160 | | Addı | | Total depth | | ft. Depth of c | | 160 4 | | Addi | | 0 | ft. to 5 | ft. Top S | terial, and structure. | | | | | 5 | " 1 1 | Blue | | | | (2) LOCATION OF WELL: | | 11 | 160 | Blue | Sandstone | | | CountySonoma Owner's number, if any- | - #1 | | e- | Seams | of Blue | Sand | | R. F. D. or Street No. | | | •• | ** | | *** | | 6095 Bodega Avenue | | | | | | | | Petaluma, California | | | | | | | | | | | | | | | | | | | | | | | | (3) TYPE OF WORK (check): | | | 14 | | | | | New well XX Deepening Recondition | ning 🗌 Abandon 🗍 | <u> </u> | ** | | | W | | If abandonment, describe material and procedure in Item | = | | ** | £4 ************************************ | | | | (4) PROPOSED USE (check): | (5) EQUIPMENT: | | 11 | ** | · · · · · · · · · · · · · · · · · · · | | | Domestic XXIndustrial Municipal | Rotary XX | | *1 | | | | | | Cable | | • (| ** | | | | Irrigation Test Well Other | Dug Well 🔲 | | | CI . | | | | (6) CASING INSTALLED: | If gravel packed | | ** | | | | | CINICI AT DOUBLE TO | | | ** | | | | | From 0 ft. 160 6 5/8 156 of | # 1/2
0 ff. | | Ls. | 11 | | | | Titolit o it. to-too is opposed. Loo wall | 160 | | ** | | | | | | | I —— | | | | | | 0 2.75 0 5 | · · · · · · · · · · · · · · · · · · · | <u> </u> | | • | | | | | re 46 | | £1 . | *(| | | | 11 11 | | | E4 | | | | | Type 2nd size of shoe or well ring None Siz | te of gravel: Pea | | 4c | 11 | | | | Describe joint Welded | | | *** | | | | | (=) P77 P07 AFT010 | | | 11 | ** | | | | (7) PERFORATIONS: | | l | ** | 14 | | | | Type of perforator used Forch | | | 11 | | | | | Size of perforations 6 in., length From 40 ft. to 100 ft. 3 Perf. per | | | 11 | | | | | 120 160 ft. 3 Perf. per | | | ** | ** | | | | | | | 44 | 14 | -13-7F | | | tt ti t | ** 24 44 | l ——— | | 11 | | | | | 26 25 35 | I — | v | ** | | | | | | ļ —— | t. | " (E | OR OFFICIAL | | | (8) CONSTRUCTION: | | i | u | | JR OFFICIAL | USE ONLY | | Was a surface sanitary seal provided? XX Yes [] No To what | depth 25 ft. | | ** | | | | | Were any strata sealed against pollution? Yes No If yes | , note depth of strata | | 42 | " | | | | From ft. to ft. | | l | 4+ | " | | | | | | | " | | | | | Method of Sealing Cement on Pack | | Work startes | 11/30 | 1964. | Completed 12/ | 4/ 64 | | (9) WATER LEVELS: | | WELL DE | RILLER'S STAT | TEMENT: | <u>*</u> | | | | ft, | | | ider my jurisdic. | ion and this report | is true to the best of | | Depth at which water was first found Standing level before perforating | ft. | 1 | dge and belief.
TREKS DR | ILLING 8 | ~ ~ drattd: & | MTD A BTTZ | | And level after perforating | ft. | NAME V | | firm, or corperation | | MPANY ord or printed) | | 7 | | Address | | bastopo: | | | | (10) WELL TESTS: | | | Sebasto | pol. /Ca | Lifornia | | | Was 2 pump test made? Yes You If yes, by whom? | Bailer | | 2//- | a list | | 2.4.0 | | | draw down after hrs. | [Signed] | GERALD | THOMPSON | Briller | - Lui | | | is made? Yes No | License No | 177681 | D | ted 12/5 | /, 19. 64 | | Was electric log made of well? Yes XX No | | | ٠. | | · | | ### TER WELL DRILLERS REPO (Sections 7076, 7077, 7078, Water Code) ORIGINÁL File Original, Duplicate and Triplicate with the ZIH? Do Not Fill In No. 80482 | - | • • | O | \mathbf{O} | ٠, | _ | | |-----------|-----|---|--------------|----|-----|---| | tate Well | No | | , | | | | | | | - | 737 | ** | •) | _ | REGIONAL WATER POLLUTION CONTROL BOARD No. 1 STATE OF CALIFORNIA | off of C | St | |----------|----| | | | | 4020 | 0 | | State wen ivo | | | | | | |---------------|---|-----|-----|----|---| | Other Well No | 5 | 18 | *** | 24 | N | | | | , - | | | | | A wert appropriate number) | 7029 | |---|---| | () | (11) WELL LOG: | | Nam | Total depth 114 fr. Depth of completed well 114 fr. | | Addi | Formation: Describe by color, character, size of material, and structure. | | Add | 0 ft. to 4 ft. Top Soil | | | 4 14 Brown Sandy Clay | | (2) LOCATION OF WELL: | 14 114 Blue Sandstone with | | County Sonoma Owner's number, if any— #4 | Traces of Shells | | R. F. D. or Street No. | | | | (1) | | 6095 Bodega Avenue Petaluma. California | , , , , , , , , , , , , , , , , , , , | | recertains Cartifornis | N | | | (1 (*) | | | At at | | (3) TYPE OF WORK (check): | , u | | New well Deepening Reconditioning Abandon | « n | | If abandonment, describe material and procedure in Item 11. | | | (4) PROPOSED USE (check): (5) EQUIPMENT: | | | Domestic XX Industrial Municipal Rotary | • 1 | | Irrigation Test Well Other Cable Dug Well | | | Dug Well Dug Well | | | (6) CASING INSTALLED: If gravel packed | 11 | | CINCLE TO DOUBLE [] | C IC | | From 0 ft. to 114 6t. 5/1811 12 or of Bord 2 1/12 to ft. | η α | | " " T14 | 44 (5 | | V 0 0 0 0 0 | a . e | |) n n n u | u u | | | σ σ | | | ti 4* | | Type and size of shoe or well ring None Size of gravel: Pea | ч . | | Describe joint Welded | 10 | | | e ee | | (7) PERFORATIONS: | | | Type of perforator used Torch | | | Size of perforations 6 in., length, by 3/16 in. | | | From 34ft, to 114 f4 | n a | | | (t (t) | | | 11 | | | 11 41 | | | · · · · · | | (8) CONSTRUCTION: | FOR OFFICIAL USE ONLY | | Was a surface sanitary seal provided XX Yes \(\subseteq \text{No To what depth} \) ft. | | | | | | Were any strata sealed against pollution? Yes No If yes, note depth of strata | 0 10 | | From ft. to ft. | | | Method of Sealing, Cement on Pack | | | Method of Scaling, Nemeric Oil 12CK | Work started 12/17/ 19 64. Completed 12/8/ 1964 | | (9) WATER LEVELS: | WELL DRILLER'S STATEMENT: | | Depth at which water was first found ft. | This well was drilled under my jurisdiction and this report is true to the best of my knowledge and belief. | | Depth at which water was first found Standing level before perforating ft. | NAME WEEKS DRILLING & PUMP COMPANY | | ing level after perforating 20 ft. | (Person, firm, or corperation) (Typed or printed) | | | Address 6100 Sebastopol Road | | (10) WELL TESTS: | Sebastopol / California | | Was a pump test made? Yer XXNo If yes, by whom? Bailer | Marin | | Yield: 5 gal./mio. with 90 ft. draw down after hrs. | [SIGNED THOMPSON Well Drill | | Temperature of water COOL Was a chemical analysis made? [] Yes Who | License No. 177681 Dated 12/12/ ,19 64 | | 75 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | ### ORIGINAL, File Original, Duplicate and Triplicate with the ### YATER WELL DRILLERS REP (Sections 7076, 7077, 7078, Water Code) No Not Fill In 80488 | - | • | • | | | | |--------|-------|-----------|---------|------|----| | GIONAL | WATER | POLLUTION | | | | | | | 1 | STATE C | OF (| LΑ | | REGIONAL WATER POLLUTION | State Well No. | | |---|--|----------| | CONTROL BOARD No. 1 STATE OF C | CALIFORNIA Other Well No. 5 8- 2W | 18 | | | (11) WELL LOG: | | | Nam | 005 | | | Add: | Total depth 295 ft. Depth of completed well 295 Formation: Describe by color, character, size of material, and structure. | ft. | | | 0 ft. to 3 ft. Top Soil | | | | 3 76 Brown Sandstone | | | (2) LOCATION OF WELL: | 76 98 Blue Sandstone & Shel | 1 | | County Sonoma Owner's number, if any— #5 | 98 295 Blue Sandstone with | | | R. F. D. or Street No. | Streaks of Sticky Blu Sand | .0 | | 6095 Bodega Highway
Petaluma, California | " " | | | Petaluma, California | 4 | | | | | | | | | | | (3) TYPE OF WORK (check): | Q 2 | | | New welk Deepening Reconditioning Abandon | O O | | | 1f abandonment, describe material and procedure in Item 11. (4) PROPOSED USE (cbeck): (5) EQUIPMENT: | 41 11 | | | , | 14 14 | | | _ C-11- | 44 11 | | | Irrigation Test Well Other Dug Well | | | | (6) CASING INSTALLED: If gravel packed | « ii | | | SINGLEXX DOUBLE Gare | | | | From ft. to 8 8tt. 5/8th. 10 of Bore ft. ft. | 0 0 | | | | | — | | 0 0 | 11 | | | | G G | | | | ft ft | | | Type and size of shoe or well ring 12" Size of gravel: | | | | Describe joint None | g 6 | | | | | | | (7) PERFORATIONS: | 0 | | | Type of perforator used NON® | C C | | | Size of perforations in., length, by in. | | | | From ft. to ft. Perf. per row Rows per ft. | T | | | | ************************************** | | | E L | | | | · N · E· · · · · · · · · · · · · | v a | | | (a) concernication | TIEGO OFFICIAL SIGE OFFICE | _ | | (8) CONSTRUCTION: Was a surface sanitary seal provided? No To what depth 8 ft. | | | | | 11 | | | Were any strata sealed against pollution? Yes No If yes, note depth of strata From ft. to ft. | W 0 | | | From ft. | \" " " | —— | | Method of Sealing Coment on Ring | Work started 12/9/ 1964, Completed 12/14/ 19 | 64 | | | WELL DRILLER'S STATEMENT: | <u> </u> | | (9) WATER LEVELS: | This well was drilled under my jurisdiction and this report is true to the bes | st of | | Depth at which
water was first found | my knowledge and belief. | | | Standing level before perforating ft. ling level after perforating 90 ft. | NAME WEEKS DRILLING & PUMP COMPANY (Person, firm, or corporation) (Typed or printed) | | | ing level after perforating 90 ft. | Address 6100 Sebastopol Road | | | (10) WELL TESTS: | Sebastopol, California | | | Was 2 pump test made? Yes XXNo If yes, by whom? Bailer | To a collection | T | | Yield: 10 gal./min. with 200 ft. draw down after hrs. | [SIGNED]. GERALD THOMESOR'ING | | | Temperature of water COOL Was a chemical analysis made? Yes XVNo | License No. 177681 Dated 12/17/ , 19 | 64 | | Was electric log made of well? Yes XXNo | | | ### ORIGINAL File Original Dunlicate and Triplicate with the ### YATER WELL DRILLERS REP Do Not Fill In 20420 | THE OIGH | אם אַנְםוּי | thireas and | tibucase with the | | |----------|-------------|-------------|-------------------|--| | RECIO | NT A T | WATER | POLITICAL | | | REGIONAL WATER POLLUTION | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 0000) | | Casas XVI-11 NI- | 00.00 | | |---|---|---|---------------|---|----------------------|-------------| | CONTROL BOARD No. 1 | CALIFOR | RNIA | () X | State Well No | 5/8-29 | 2118 | | ert appropriate number) | | <u>ナ</u> | 020 | Other Well No | | ****** | | (1) | (11) W | ELL LOG: | | | | | | Nan | Total depth | 204 | | oth of completed well | 204 | £. | | Add | | | | se of material, and structs | | ft. | | Aud | O | ft. to 3 | | op Soil | | | | | 3 | 88 | | rown Samd | | | | (2) LOCATION OF WELL: | 78 | 204 | | lue Sandst | one with | | | N - | | | | treaks of | | | | County Sonoma Owner's number, if any—#6 R. F. D. or Street No. | | ** | | and | | | | 6095 Bodega Highway | | rı . | | | | | | Petaluma, California | | • | | | | | | 2 C O M. W. Chillian & C. Chillian | l | ** | | | | | | | | | ., | | | | | | | | ** | · | | | | (3) TYPE OF WORK (check): | l | | ** | | A. 18 | | | New well Deepening Reconditioning Abandon | | ** | | 7-7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | | | | If abandonment, describe material and procedure in Item 11. | | ** | | | | | | (4) PROPOSED USE (check): (5) EQUIPMENT: | | | | | | | | Domestic XX Industrial Municipal Rotary | | | | | | | | Turination Tast Wall Cable | | ··· | ·· | | | | | Dug Well | | | ** | | | | | (6) CASING INSTALLED: If gravel packed | l —— | ** | ** | | | | | 3255 | | | ** | | | | | From O ft. to 204 ft. 6 p5/8" 23ii of Bolk 2 1/2" O ft. | | | | | | | | Profit of it, to 20 tr. O Day, 3 awaii 5 204 " | | *************************************** | | | | | | " " " " " " " " " " " " " " " " " " " | | | ••• | | | | | | ļ | | ** | · · · · · · · · · · · · · · · · · · · | | | | a 6 u a tt u tt | ł ——— | 11 | | | · | | | 76 16 17 10 10 10 | ļ ——— | 11 | ., | | | - | | Type and size of shoe or well ring NOMS Size of gravel: Pea | ļ —— | | ** | | | | | Describe joint Welded | | | | | | | | Ne Idea | | " | *** | | | — | | (7) PERFORATIONS: | ļ | | | | | | | Toron of purformer word Porch | . ——— | ** | 11 | | ···· | | | Size of perforations 6 in., length, b3/16 in. | ļ | 44 | 11 | | | | | Fron 64 ft. to 84 ft. 4 Perf. per row 1 Rows per ft. | | 44 | 11 | | | — | | 104 144 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | EF | • | | | | | 164 204 4 1 1 | | 44 | 41 | | ····· | | | 11 11 10 10 10 10 10 10 10 10 10 10 10 1 | | | ., | | | | | u v u u u u u u u u u u | | v | ** | | ···· | | | | ļ ——— | ٠. | rs | * ** | | | | (8) CONSTRUCTION: | i | | | OR OFFICE | HAL USE ONL | V | | Was a surface sanitary seal provided? XXYes \(\Box \) No To what depth \(\frac{30}{20} \) ft. | | | 14 | | WIE OUL OILL | • | | Were any strata sealed against pollution? Yes No If yes, note depth of strata | | 11 | | | | | | From ft. to ft. | | ** | | | | | | · · · · · · · · · · · · · · · · · · · | - | 1 | ., | | | | | Method of Sealing Cement on Pack | Work started | 12/14/ | 19€ | 34 , Completed | 12/17/ | 9 64 | | | WIELL DO | ILLER'S STA | TEMENT. | | | | | (9) WATER LEVELS: | | | | | eport is true to the | best of | | Depth at which water was first found ft. | | dge and belief. | 2 1 | | A True PW PWF | , | | Standing level before perforating RAME (**) | NAME 1 | WEEKS D | RILLI | NG & PUMP | C OMPANY | | | ing level after perforating : 65 th. | 1 | (Person, | firm, or corp | oration) | (Typed or printed) | | | | | | | pol Road | -) | | | (10) WELL TESTS: | | Sebag/Co | pol, | Call ford | a <u>b</u> | | | Was 2 pump test made? Yes XXNo If yes, by whom? Bailer | [Greatent] | 110 | al | Lope | MO DOWN | | | Yield: 8 gal./min. with 135 ft. draw down after hrs. | [SIGNED] | GERALD | THOME | יישויוע וואואראי. | <i>U</i> . | | | Temperature of water COOL Was a chemical analysis made? Yes | License No. | 177681 | | Dated | 12/17/ , 19(| 64 | ### ORIGINAL File Original, Duplicate and Triplicate with the ### ATER WELL DRILLERS REP((Sections 7076, 7077, 7078, Water Code) | REGIONAL | WATER | POLLUTION | |----------|-------|-----------| | | | _ | Was electric log made of well? Yes No | Do | Not Fill In | |---------------|-------------| | $N_{\dot{0}}$ | 80491 | | | | DWR 188 (REV 3-54) X | REGIONAL WATER POLLUTION | State Well No. | |--|--| | CONTROL BOARD No. 1 STATE OF C | State Well No. | | | | | (A) | (11) WELL LOG: | | Nar | Total depth 136 ft. Depth of completed well 136 ft | | Adc | Formation: Describe by color, character, size of material, and structure. | | | O fr. to 4 fr. Top Soil | | | 4 18 Brown Sandstone | | (2) LOCATION OF WELL: | 18 " 136 " Blue Sandstone with | | County Sonoma Owner's number, if any Well #7-Lot #7 | Traces of Shells | | R. F. D. or Street No. | 0 | | | f1 1 | | 6095 Bodega Highway | 17 | | Petaluma, California | 11 | | | (I) I* | | | 11 | | (3) TYPE OF WORK (check): | 11 (1 | | New well | et et | | If abandonment, describe material and procedure in Item 11. | tt (1 | | (4) PROPOSED USE (check): (5) EQUIPMENT: | II U | | · · · · · · · · · · · · · · · · · · · | tt e | | Domestic XX Industrial Municipal Rotary | . It is | | Irrigation Test Well Other Dug Well | II II | | Dug wen | 11 11 | | (6) CASING INSTALLED: If gravel packed | tt u | | SINGI MY DOUBLE C | | | From 0 ft. to 136 ft6 5/8" 12 win of Bale 1/2" 0 ft. | No. 10 Control of the | | 136" | CC 16 | | | 11 11 | | | 10 00 | | | 41 (1 | | ., u | tt ti | | | tt r | | Type and size of shoe or well ring NONS Size of gravel: Pea | | | Describe joint Welded | 0 | | /_\ | tt 11 | | (7) PERFORATIONS: | | | Type of perforator used Torch | u u | | Size of perforations 6 in., length, by 3/16 in. | 41 1) | | From 36 ft. to 136 ft. 4 Perf. per row 1 Rows per ft. | 11 11 | | | · · · · · · · · · · · · · · · · · · · | | a v v v v v v v v v v v v v v v v v v v | (c (c | | n a n a a n ,9 31 A | If M | | ., | v u | | | · · · · · · · · · · · · · · · · · · · | | (8) CONSTRUCTION: | FOR OFFICIAL USE ONLY | | Was a surface sanitary seal provided XX Yes 🗆 No To what depth 20 ft. | " " " " ONE ONE OF OWE | | Were any strata sealed against pollution? \(\Boxed{\text{Yes}} \) No If yes, note depth of strata | CC CI | | D | tr tt | | from ft to ft. | tr | | Method of Sealing Cement on Pack | Work started 12/11/ 1964 . Completed 12/21/ 1964 | | (9) WATER LEVELS: | WELL DRILLER'S STATEMENT: | | | This well was drilled under my jurisdiction and this report is true to the best of | | Depth at which water was first found ft. | my knowledge and belief. | | Standing level before perforating ft. | NAME WEEKS DRILLING & PUMP COMPANY | | ing level after perforating 14. | (Person, firm, or corporation) (Typed or printed) | |
/> THEFT | Address 6100 Sebastopol Road | | (10) WELL TESTS: | Sebastopol, California | | Was 2 pump test made? 🖟 YeXX No If yes, by whom? Bailer | some do la la la de de de de de de la | | Yield: 12 gal./min. with 116 ft. draw down after hrs. | GERALD THOMPSON W Drilled | | Temperature of water COOL Was a chemical analysis made? Yes No | License No. 177681 Dated 12/22/ 19 64 | 57025 6-57 50M QUIN A SPO STATE OF CALIFORNIA THE RESOURCES AGENCY Do Not Fill In DRIGINAL File with DWR Water Code Sec. 13752 ### DEPARTMENT OF WATER RESOURCES ### WATER WELL DRILLERS REPORT 143874 State Well No. Other Well No. 5N/QW-22 |) | · | | | | | | | | ther Well No | 777077 | |-------------------|----------------------|--------------|---|--------------------|---------------------------------------|-----------------|---------------------------------------|--------------------------|-----------------|-----------------------| | (1 | | | *************************************** | | :' - | (11) WEI | L LOG: | | | | | N: | | | | | | Total depth | 12-3 | ft. Depth of co | moleted well | ft. | | A | | | | | ÷ | | escribe by color, che | racter, size of material | | | | _ | | | | | | | | ft. to | | ft. | | (2) LOCA | KTION OF | |)wner's numb | er, if a to he f | #10 | 0-1 | D 19 | Moun | Dand | stre | | Township, Range | e, and Section | heen | Mille | 11 Pan | ch_ | 10. | -25 | Bree | nour | Selono | | | ties, roads | aleen | re M | Wendo | red R | X | | | | | | | | <i>1</i> 3 - | 330 | -16/ | | 25 | - 35 | Bu | wno | undela | | (3) TYPE | OF WOR | K (check) |): | | | | | | , | | | | Deepening | '. | ditioning [| _ | ş 🗀 | | -100 | JGU | LLDO | Melon | | | , describe mater | | | | | 1 | · · · · · · | - 0/2 | | 0. | | | POSED USE | | | (5) EQUI | PMENT: | 100 | <u>-/3 3</u> | - GD | y war | Melme | | | Industrial | | | Rotary | | | | <i>L</i> | <i></i> | | | Irrigation [| Test Wel | I 📋 💮 Oi | ther 🔲 | Cable
Other | 24 | | | | | | | | | | <u>.</u> | Other | | | | | | | | (6) CASI | NG INSTA | LLED: | | If gravel pack | ced | | - | · | | · · | | STEEL | | THER: | | ii giavei paci | .xcu | | | • | | | | SINGLE N | DOUBLE - | | | | | | · · | | | | | _ | | Gage | Diamete | | Τ. | | | | | | | From
ft. | To
ft. Diar | n. Wall | of
Bore | From
ft. | To
ft. | | , | | 1 | | | 6 1 | 100 8 | 188 | | | | | | | | | | 7 | | 7.6. | - | | | | | | | <u> </u> | | | 2 | . J. V. S. | | ~) (| | | | | ing the second | | | Size of shoe or w | vell ring hax | 6X8 | Size of gr | vel: | | | | | <u> </u> | | | Describe joint | Wild | <i>y</i> | | | : | , | | | | | | (7) PERF | ORATION | S OR SCI | REEN: | _ | 0 | | | | | | | Type of perforat | tion or name of scr | een Mac | <u> </u> | auce | <u> </u> | | | | · | | | | | Perf. | Rows | | | | | | | ····· | | From | То | per | per | | Size | | | <u> </u> | <u> </u> | | | ft. | ft. | row | ft. | | x in. | | <u>.</u>
i | | · | | | 73_ | 100 | = | 120 | - 2 7 | <u> </u> | | | | | · · | | | | | - | | | - | 1 | | | | | <u> </u> | - | | <u> </u> | | | | ī | | : | | | | | | 1 | | · · · · · · · · · · · · · · · · · · · | | · · · · · · · · · · · · · · · · · · · | | • | . : | | (0) CONT | ern Horio | NT. | <u> </u> | | | | <u>:</u> | | | · | | ` • | STRUCTIC | ~ 1 | 10 🗆 | T. w.b.s. dsl | J.D 66 | - | | | | | | | nitary seal provide | | No □ | To what depth | depth of strata | | | | | | | | sealed against polls | ft. | 140 🗀 | 11 yes, note | depth of scrata | | 1. 1 | - 22 | | | | From | ft. to | ft. | | | | Works | 113 1 | Company | Cc 160 | 76 | | Method of sealin | 12 | Mer 1 | | - | | 3 | ILLER'S STAT | | : | | | | . 7 | c. | | | , | | | | and this report | t is true to the best | | ` ' | ER LEVEI | | | fs. S | ر کو | of my know | yledge and belief. | <i>,</i> 7 | ` | i | | | before perforating | | | ft. | | NAME | villel | a 4/k | Jelle | in _ | | | after perforating a | | | ft. | 12 | | (Pers | on, firm, or corporation | Typed or prin | pted) | | | LL TESTS: | | | 0. | | Address | 15411 | narb lu | nt sa | isskel | | Was pump test n | | No □ I | f yes, by who | m Bil | les | | dant | Nasa | 1 Cu | <u> </u> | | E la | gal./min. | 100 | | lown after | hrs. | [SIGNED] | hun | 17 | 17/ | , | | remperature of | | - /- | | ade? Yes 🗆 N | 10 💢 | | 1000 | Cia AND | yellet | S | | | made of well? You | | | , attach copy | | License No | 288 | 54 Dated_ | Die | 24, 1976. | ### WELL LOCATION SKETCH | | ORTH BOUNDA | RY OF SECTION | 1 | | 143874 | |----------------|-----------------------|---------------|-------|--------|-------------| | , and a second | | 7 79 | | | | | NW
NW | <i>y</i> ₄ | NE | 1/4 | % MILE | | | | | | | , | Township | | 1 | | | ` | | Section No. | | sw | 1/4 | SE | %
 | WILE | | | 1 | | . |
 | . % | | | ½ MI | ILE | ½ M | 1LE | | | N/S E/W A. Location of well in sectionized areas. Sketch roads, railroads, streams, or other features | Detal | una Velley Be | rd He | hluan | Topital | um 500 | ri. | |-------|---------------|-------|-------|---------------------|----------|-----| | V. | NORTH | | | | | | | | Lat no. 10. | | | | | | | WEST | | 65, | EAST | | · | | | | | | - | | | | | | 380 SOUTH | · Ek | rik e |)
12 144 153 | NM Hat - | | B. Location of well in areas not sectionized. Sketch roads, railroads, streams, or other features as necessary. Indicate distances. ### ORIGINAL File with DWR ### DEPARTMENT OF WATER RESOURCES WATER WELL DRILLERS REPORT No. 338650 State Well No. 05N00W20 | Local Permit No. or Date | Other Well No. | |---|--| | ACCOUNT TO SEE DIES TO SEE DE SE DE SEE DE SE | (12) WELL LOG: Total depth 257 ft Completed depth 257 ft | | | • | | | from ft. to ft Formation (Describe by color, character, size or material) | | • • • | 0 - 2 Topsoil - | | (2) LOCATION OF WELL (See instructions): | 2 55 Yellow sandstone | | County Sonoma Owner's Well No. 22-330-01 | 55 - 80 Vellow clayee sands with | | Well address if different from aboveSame | small streaks of sandstone | | Township Range Section | 80 - 257 Blue caly sands with streak | | Distance from cities, roads, railroads, fences, etc. | of sandstone | | | | | | - 11 | | (3) TYPE OF WORK: | - ^ \~ | | New Well Z Deepening | | | Reconstruction | | | Reconditioning | | | Horizontal Well | | | Destruction ☐ (Describe destruction materials and pro- | - MS | | destruction materials and pro-
cedures in Item 12) | 113 1110 m | | (4) PROPOSED USE | | | Domestic | 12 - x (C) 41 2) - | | Irrigation | | | Industrial | | | Test Well | | | Municipal | 1/1/2 0/00 | | Other | (b) \(\text{\text{\$\sigma}}\) | | WELL LOCATION SKETCH (Describe) | 7 -60 | | (5) EQUIPMENT: (6) GRAVE ACEMONTONY SON | 1 1/2 O | | Rotary Reverse Tag No Sind Tag | | | Cable Air Regnetes of bore | | | Other Bucker Racked from 101 to 257 | 3(())~- | | | <u> </u> | | (7) CASING INSTALLED: (8) PERPORATIONS: Microsoft Controls Type of extraordion or size of series. | | | | | | From To Dia Gage or Riving To Stot | | | tt. Ith in Wall the size | | | 0 257 6" CL200 117 25% ,032 | | | | | | (9) WELL SEAL: | | | Was surface sanitary seal provided? Yes X No I If yes, to depth 101 ft | | | Were strata sealed against pollution? Yes □ No □ Intervalft | <u>-</u> | | Method of sealing Sand Grout On Pack | Work started 12-7 19-90 Completed 12-12-19-90 | | (10) WATER LEVELS: | WELL DRILLER'S STATEMENT: | | Depth of first water, if known ft | This well was drilled under my jurisdiction and this report is true to the | | Standing level after well completionft | best of my knowledge and belief. | | (11) WELL TESTS: | Signed Ward Thompson July frampa | | Vas well test made? Yes ⊠ No □ If yes, by whom? <u>Weeks</u>
Type of test Pump □ Batler ☑ Air lift □ | NAME WEEKS
DRILLING THE COMPANY | | Depth to water at start of test 110 %. At end of test 160 ft | (Person, firm, or corporation) (Typed or printed) | | Discharge20_ gal/min after2 hours Water temperature | 1 Address | | Chemical analysis made? Yes No Yes If yes, by whom? | City Sebastopol, CA ZIP 95473 | | Was electric log made Yes I No 🔀 If yes, attach copy to this report | License No | | · | or ignat, | pahiirate aua | 111httraje | Market and | |----|-----------|---------------|------------|------------| | RE | GIONA | WATED | POTTI | TION | | AMOIOIME WAILE | | RECEIVED | | | | |-----------------------------|------------|----------|------------------|------|------------| | CONTROL BOARD | NoREGIONAL | WATER PO | TPADRUJIC | OF (| CALIFORNIA | | (Insert appropriate number) | CONT | ROL BOAR | D #2 | | | | (Insert appropriate number) | CONTROL BOARD #2 | | | 21 | 45 | Other Well No | |--|---|---------------|---|---------------|---|---| | I) OWNER: | DEC G 1956 | (11) W | TELT. | | | | | (1) OWINER: | | | | - | <i>(.</i> 5 | | | | | Total depth | | .30 | | th of completed well e of material, and structure. | | | | O | ft. to | | _ | on soil | | | | 3 | 4 | 10 | | ellow sand stone | | (A) 1004770N OF W | ZEX X | 10 | * 4 | 130 | | blue " " | | (2) LOCATION OF W | | | ۲, | | | 7 | | County Sonoma | Owner's number, if any— 4045 | | ** | • • • | ** | | | | iddle Two Rock Rd | | ** | • | | | | Petalum | a, Calif. | | ** | | | | | | | | . •• | | *1 | | | | | | *1 | | | | | | | | | | • | | | (3) TYPE OF WORK | (cbeck): | | ** | | | | | New well 🛣 Deepening | ☐ Reconditioning ☐ Abandon | ո □ | ** | | ** | | | If abandonment, describe material | and procedure in Item 11. | | | | | | | (4) PROPOSED USE | (check): (5) EQUIPMEN | VT: | ** | | | 7-14- | | Domestic 😿 Industrial [| _ | J | | | | | | Irrigation Test Well | Cable [| X | • | | | | | TITISACION [] ACST WEST [| Dug Well | <u> </u> | ** | | | | | (6) CASING INSTAL | LED: If gravel packed | | ** | | ** | | | SINGLE DOUBLE | Gage | | | | 16 | | | | Diam. 3/16 or Diameter of Bore ft. | fr. | 14 | | " | | | Tron It. to It I | /c | | | | •• | | | V | | | ** | | ., | | | | | | ** | | | 2710030000000000000000000000000000000000 | | 11 | | " | ••• | | ** | | | 10 10 | 15. 15. | | 11 | | | | | Type and size of shoe or well ring | 8" steel Size of gravel: | | •• | | | | | Describe joint Dut W | eld | | ** | | | | | | | | ** | | **, | | | (7) PERFORATIONS: | • | | ** | | | | | Type of perforator used | none | | 44 | | ** | | | Size of perforations | in., length, by | în. | 41 | | ** | | | From ft. to ft. | Perf. per row Rows p | per ft. | ¢r . | | 11 | | | ** ** ** | | | ٠, | | •• | | | ** | | ;· · · · | • | | | | | 16 16 16 16 16 16 16 16 16 16 16 16 16 1 | | ,, ., | | | | | | | | | | | •• | | | (8) CONSTRUCTION | • | | ** | | ** | (507 0====== | | Was a surface sanitary seal provided? | | ft | | | •• | VIUK OFFICIAL USE ONLY | | | ? Yes XNo If yes, note depth of strata | | ** | | ** | | | P | | | *·- | | 11 | | | rion ft, to | ft. | | 9 | -, | ., | | | Method of Sealing | | Work started | | 15-56 | 19 | . Completed 9-19-56 19 | | | | | | | | 3-13-00 | | (9) WATER LEVELS: | | | | S STAT | | | | Depth at which water was first found | 16 | ft. my knowle | | | ы ту <u>1</u> 2 | urisdiction and this report is true to the bes | | Canding level before perforating | 10 | ft. NAME | Obe: | rtois | Wel | l Drilling | | ading level after perforating | | ft. | | (Person, fir | m, or corp | oration) (Typed or printed) | | | | Address | | | | ashington St | | (10) WELL TESTS: | | P | eta. | luma, | Cali | f. | | Was a pump test made? 🗌 Yes 🙀 N | To If yes, by whom? | [SIGNED] | | Q. | 9. | Oberto. | | Yield: 1 gal./min. w | | hrs. | ~- | One | | Well Driller | | Temperature of water | Was a chemical analysis made? ☐ Yes XNo | License No | | L877 | <i>f</i> | Dated 11-6-56, 19 | | Was electric log made of well? | r □ No | 95689 3-5 | 4 50M QI | UIN ® 5P0 | | DWR FORM No. 246 (REV. 3 | # APPENDIX E WELL YIELD TEST Report Date: Report User Name: Report Computer Name: Application: Application Version: 7/3/2018 11:57 Matt RICH-PC WinSitu.exe 5.6.29.3 Log File Properties File Name Create Date Fenix Farms Well 2018-06-26 wsl 6/26/2018 8:41 Device Properties Device Site Device Name Device Name Serial Number Firmware Version Hardware Version Device Address Device Comm Cfg Used Memory Used Battery Level TROLL 700 Fenix Farms Well 126700 2.07 Log Configuration Log Name Created By Computer Name Application Application Application Version Create Date Log Setup Time Zone Notes Size(bytes) Overwrite when full Scheduled Start Time Scheduled Stop Time Type Interval Fenix Farms Matt Field PC WinSituMobile.exe 5.5.1.13 6/26/2018 8:41:45 AM Pacific Daylight Time Unknown Disabled 0.999 Manual Start No Stop Time Linear Days: 0 hrs: 00 mins: 30 secs: 00 Level Reference Settings At Log Creation Level Measurement Mode Specific Gravity Level Reference Mode: Level Reference Value: Level Reference Head Pressure Level Depth To Water Set new reference Other Log Settings Pressure Offset: Depth of Probe: Head Pressure: 280ft Temperature: Log Notes: Date and Time Note Manual Start Command Suspend Command Manual Stop Command Log Data: Record Count 126700 Pressure/Temp 300 PSIG (211m/692ft) Time Zone: Pacific Daylight Time | | | Sensor: Pres(G) 692ft | Sensor: Pres(G) 692ft | | |------------------------------------|--------------|-----------------------|---------------------------|----------| | | Elapsed Time | SN#: 126700 | SN#: 126700 | | | 6/26/2018 9:03 | | | Level Depth To Water (ft) | Flow GPM | | 6/26/2018 9:33 | | | 56.034 | 23 | | 6/26/2018 10:03 | | | 101.209
153.458 | 15
12 | | 6/26/2018 10:33 | | | 179.89 | 9 | | 6/26/2018 11:03 | | | 179.472 | 9 | | 6/26/2018 11:33 | | | 179.326 | 9 | | 6/26/2018 12:03 | | | 179.549 | 9 | | 6/26/2018 12:33 | | | 179.559 | 9 | | 6/26/2018 13:03 | | | 179.386 | 9 | | 6/26/2018 13:33 | | | 179.489 | 9 | | 6/26/2018 14:03 | | | 179.382 | 9 | | 6/26/2018 14:33 | | | 179.223 | 9 | | 6/26/2018 15:03
6/26/2018 15:33 | | | 179.598 | 9 | | 6/26/2018 16:03 | | | 179.231
179.498 | 9 | | 6/26/2018 16:33 | | | 179.432 | 9 | | 6/26/2018 17:03 | | | 179.198 | 9 | | 6/26/2018 17:33 | | | 179.34 | 9 | | 6/26/2018 18:03 | | | 179.449 | 9 | | 6/26/2018 18:33 | | | 179.181 | 9 | | 6/26/2018 19:03 | | | 179 | 9 | | 6/26/2018 19:33 | | | 179.869 | 9 | | 6/26/2018 20:03 | | | 179.371 | 9 | | 6/26/2018 20:33 | | | 179.813 | 9 | | 6/26/2018 21:03 | | | 179.27 | 9 | | 6/26/2018 21:33
6/26/2018 22:03 | | | 179.047 | 9 | | 6/26/2018 22:33 | | | 179.628
179.684 | 9 | | 6/26/2018 23:03 | | | 179.564 | 9 | | 6/26/2018 23:33 | | | 179.248 | 9 | | 6/27/2018 0:03 | | | 179.529 | 9 | | 6/27/2018 0:33 | | | 179.309 | 9 | | 6/27/2018 1:03 | | | 179.2 | 9 | | 6/27/2018 1:33 | | | 179.545 | 9 | | 6/27/2018 2:03 | | | 179.818 | 9 | | 6/27/2018 2:33 | | | 179.154 | 9 | | 6/27/2018 3:03 | | | 179.373 | 9 | | 6/27/2018 3:33 | | | 179.635 | 9 | | 6/27/2018 4:03
6/27/2018 4:33 | | | 179.829 | 9 | | 6/27/2018 5:03 | | | 179.981
180.117 | 9 | | 6/27/2018 5:33 | | | 180.337 | 9 | | 6/27/2018 5:03 | | | 180.433 | 9 | | 6/27/2018 6:33 | | | 180.166 | 9 | | 6/27/2018 7:03 | | | 180.346 | 9 | | 6/27/2018 7:33 | | | 180.525 | 9 | | 6/27/2018 8:03 | | | 180.831 | 7 | | 6/27/2018 8:33 | | | 180.058 | 7 | | 6/27/2018 9:03 | | | 180.232 | 7 | | 6/27/2018 9:33
6/27/2018 10:03 | | | 180.429 | 7 | | 6/27/2018 10:33 | | | 180.422
180.503 | 7 | | 6/27/2018 11:03 | | | 180.494 | 7 | | 6/27/2018 11:33 | | | 180.161 | 7 | | 6/27/2018 12:03 | | | 180.267 | 7 | | 6/27/2018 12:33 | | | 180.345 | 7 | | 6/27/2018 13:03 | | | 180.521 | 7 | | 6/27/2018 13:33 | | | 180.723 | 7 | | 6/27/2018 14:03 | | | 180.802 | 7 | | 6/27/2018 14:33
6/27/2018 15:03 | | | 180.018 | 7 | | 6/27/2018 15:33 | | | 180.153 | 7 | | 6/27/2018 16:03 | | | 180.271
180.381 | 7 | | 6/27/2018 16:33 | | | 180.583 | 7 | | 6/27/2018 17:03 | | | 180.341 | 7 | | 6/27/2018 17:33 | | | 180.276 | 7 | | 6/27/2018 18:03 | | | 180.075 | 7 | | 6/27/2018 18:33 | | | 180.197 | 7 | | 6/27/2018 19:03 | | | 180.33 | 7 | | 6/27/2018 19:33 | | | 180.477 | 7 | | 6/27/2018 20:03
6/27/2018 20:33 | | | 180.516 | 7 | | 6/27/2018 21:03 | | | 180.359
180.487 | 7 | | 6/27/2018 21:33 | | | 180.116 | 7 | | 6/27/2018 22:03 | | | 180.206 | 7 | | 6/27/2018 22:33 | | | 180.419 | 7 | | 6/27/2018 23:03 | | | 180.528 | 7 | | 6/27/2018 23:33 | | | 180.394 | 7 | | 6/28/2018 0:03 | | | 180.599 | 7 | | 6/28/2018 0:33 | | | 180.564 | 7 | | 6/28/2018 1:03 | | | 180.473 | 7 | | 6/28/2018 1:33
6/28/2018 2:03 | | | 180.246 | 7 | | 6/28/2018 2:33 | | | 180.346
180.544 | 7 | | 6/28/2018 3:03 | | | 180.656 | 7 | | 6/28/2018 3:33 | | | 180.211 | 7 | | 6/28/2018 4:03 | | | 180.24 | 7 | | 6/28/2018 4:33 | | | 180.055 | 7 | | 6/28/2018 5:03 | | | 180.263 | 7 | | 6/28/2018 5:33 | | | 180.298 | 7 | | 6/28/2018 6:03
6/28/2018 6:33 | | | 180.373 | 7 | | 0/20/2010 0:33 | | | 180.482 | 7 | | | | | | | Date and Time | 6/28/2018 7:03
6/28/2018 7:33 | 180.556
180.457 | 7 | |------------------------------------|--------------------|----| | 6/28/2018 8:03 | 180.284 | 7 | | 6/28/2018 8:33
6/28/2018 9:03 | 180.16
180.366 | 7 | | 6/28/2018 9:33 | 180.109 | 7 | | 6/28/2018 10:03
6/28/2018 10:33 | 180.06
180.2 | 7 | | 6/28/2018 11:03 | 180.286 | 7 | | 6/28/2018 11:33
6/28/2018 12:03 | 180.422
180.98 | 7 | | 6/28/2018 12:33 | 180.267 | 7 | | 6/28/2018 13:03
6/28/2018 13:33 | 180.478 | 7 | | 6/28/2018 14:03 | 180.201
180.106 | 7 | | 6/28/2018 14:33
6/38/2018 15:03 | 180.148 | 7 | |
6/28/2018 15:03
6/28/2018 15:33 | 180.085
180.384 | 7 | | 6/28/2018 16:03 | 180.467 | 7 | | 6/28/2018 16:33
6/28/2018 17:03 | 180.391
180.471 | 7 | | 6/28/2018 17:33 | 180.283 | 7 | | 6/28/2018 18:03
6/28/2018 18:33 | 180.382
180.311 | 7 | | 6/28/2018 19:03 | 180.75 | 7 | | 6/28/2018 19:33
6/28/2018 20:03 | 180.185
180.443 | 7 | | 6/28/2018 20:33 | 180.172 | 7 | | 6/28/2018 21:03
6/28/2018 21:33 | 180.494
180.406 | 7 | | 6/28/2018 22:03 | 180.267 | 7 | | 6/28/2018 22:33
6/28/2018 23:03 | 180.471
180.259 | 7 | | 6/28/2018 23:33 | 180.483 | 7 | | 6/29/2018 0:03
6/29/2018 0:33 | 180.498
180.433 | 7 | | 6/29/2018 1:03 | 180.124 | 7 | | 6/29/2018 1:33
6/29/2018 2:03 | 180.291 | 7 | | 6/29/2018 2:33 | 180.352
180.383 | 7 | | 6/29/2018 3:03 | 180.148 | 7 | | 6/29/2018 3:33
6/29/2018 4:03 | 180.012
180.364 | 7 | | 6/29/2018 4:33 | 180.522 | 7 | | 6/29/2018 5:03
6/29/2018 5:33 | 180.319
180.216 | 7 | | 6/29/2018 6:03 | 180.498 | 7 | | 6/29/2018 6:33
6/29/2018 7:03 | 180.283
180.356 | 7 | | 6/29/2018 7:33 | 180.539 | 7 | | 6/29/2018 8:03
6/29/2018 8:33 | 180.399
180.22 | 7 | | 6/29/2018 9:03 | 180.046 | 7 | | 6/29/2018 9:33
6/29/2018 10:03 | 120.256
98.484 | 0 | | 6/29/2018 10:33 | 97.579 | 0 | | 6/29/2018 11:03
6/29/2018 11:33 | 96.584
96.39 | 0 | | 6/29/2018 12:03 | 95.265 | 0 | | 6/29/2018 12:33
6/29/2018 13:03 | 94.207
93.086 | 0 | | 6/29/2018 13:33 | 92.3527 | 0 | | 6/29/2018 14:03
6/29/2018 14:33 | 91.4348
90.5169 | 0 | | 6/29/2018 15:03 | 89.599 | 0 | | 6/29/2018 15:33
6/29/2018 16:03 | 88.6811
87.7632 | 0 | | 6/29/2018 16:33 | 86.8453 | 0 | | 6/29/2018 17:03
6/29/2018 17:33 | 85.9274
85.0095 | 0 | | 6/29/2018 18:03 | 84.0916 | 0 | | 6/29/2018 18:33
6/29/2018 19:03 | 83.1737
82.2558 | 0 | | 6/29/2018 19:33 | 81.3379 | 0 | | 6/29/2018 20:03
6/29/2018 20:33 | 80.42
79.5021 | 0 | | 6/29/2018 21:03 | 78.5842 | 0 | | 6/29/2018 21:33
6/29/2018 22:03 | 77.6663
76.7484 | 0 | | 6/29/2018 22:33 | 75.8305 | 0 | | 6/29/2018 23:03
6/29/2018 23:33 | 74.9126
73.9947 | 0 | | 6/30/2018 0:03 | 73.3547 | 0 | | 6/30/2018 0:33
6/30/2018 1:03 | 72.1589 | 0 | | 6/30/2018 1:33 | 71.241
70.3231 | 0 | | 6/30/2018 2:03
6/30/2018 2:33 | 69.4052 | 0 | | 6/30/2018 3:03 | 68.4873
67.5694 | 0 | | 6/30/2018 3:33
6/30/2018 4:03 | 66.6515 | 0 | | 6/30/2018 4:03 | 65.7336
64.8157 | 0 | | 5/30/2018 5:03 | 63.8978 | 0 | | 6/30/2018 5:33
6/30/2018 6:03 | 62.9799
62.062 | 0 | | 6/30/2018 6:33 | 61.1441 | 0 | | 6/30/2018 7:03
6/30/2018 7:33 | 60.2262
59.3083 | 0 | | 6/30/2018 8:03 | 58.3904 | 0 | | 6/30/2018 8:33
6/30/2018 9:03 | 57.4725
56.5546 | 0 | | | 30.3340 | ų. | ## APPENDIX F LABORATORY ANALYTICAL REPORTS Report Date: July 09, 2018 ### **Laboratory Report** Linda Pool Les Petersen Drilling 5434 Old Redwood Highway Santa Rosa, CA 95403 Project Name: 6096 Bodega Ave. Fenix Farms, LLC #36359 Lab Project Number: 8062913 This 5 page report of analytical data has been reviewed and approved for release. Michele Peters Laboratory Director ### Total Coliform & E. Coli | Lab# | Sample ID | Compound Name | Result (M | /IPN/100 mL) | RDL (MPN/100 mL) | |----------------|-----------|----------------|----------------|--------------|------------------| | 8062913-01 | Well Head | Total Coliform | >240 | 0 | 1 | | | | E. Coli | | 1 | 1 | | Date Sampled: | 06/28/18 | Date Analyzed: | 06/30/18 | QC E | Batch: B017805 | | Date Received: | 06/29/18 | Method: | SM 9223 B-2004 | | | ### Metals by Graphite Furnace | Lab# | Sample ID | Compound Name | | Result (µg/L) | RDL (µg/L) | |----------------|-----------|----------------|-----------|---------------|------------------| | 8062913-01 | Well Head | Arsenic (As) | | ND | 2.0 | | Date Sampled: | 06/28/18 | Date Analyzed: | 07/02/18 | Q | C Batch: B017820 | | Date Received: | 06/29/18 | Method: | EPA 200.9 | | | ### Metals by ICP | Lab# | Sample ID | Compound Name | | Result (µg/L) | $RDL (\mu g/L)$ | |----------------|-----------|----------------|-----------|---------------|-----------------| | 8062913-01 | Well Head | Aluminum (Al) | | 770 | 50 | | | | Iron (Fe) | | 580 | 100 | | | | Manganese (Mn) | | ND | 20 | | | | Zinc (Zn) | | ND | 50 | | Date Sampled: | 06/28/18 | Date Analyzed: | 07/02/18 | QC | Batch: B017821 | | Date Received: | 06/29/18 | Method: | EPA 200.7 | | | ### Metals (mg/L) | Lab# | Sample ID | Compound Name | | Result (mg/L) | RDL (mg/L) | |----------------|-----------|--------------------------|-----------|---------------|------------------| | 8062913-01 | Well Head | Boron (B)
Sodium (Na) | | 0.078
110 | 0.050
0.40 | | Date Sampled: | 06/28/18 | Date Analyzed; | 07/05/18 | | C Batch: B017821 | | Date Received: | 06/29/18 | Method: | EPA 200,7 | Ψ. | Buton. Botrozi | ### Silica | Lab# | Sample ID | Compound Name | | Result (mg/L) | RDL (mg/L) | |----------------|-----------|----------------|-----------|---------------|-------------------| | 8062913-01 | Well Head | Silica (SiO2) | | 35 | 0.50 | | Date Sampled: | 06/28/18 | Date Analyzed: | 07/02/18 | (| QC Batch; B017821 | | Date Received: | 06/29/18 | Method: | EPA 200.7 | | | ### Hardness | Lab# | Sample ID | Compound Name | | Result (mg/L) | RDL (mg/L) | |----------------|-----------|-----------------------------|-----------|---------------|----------------| | 8062913-01 | Well Head | Calcium (Ca) Magnesium (Mg) | | 3.4
0.59 | 0.25
0.10 | | | | Hardness | | 11 | 1.0 | | Date Sampled: | 06/28/18 | Date Analyzed: | 07/02/18 | QC | Batch: B017821 | | Date Received: | 06/29/18 | Method: | EPA 200.7 | | | ### рH | Lab# | Sample ID | Compound Name | R | esult (pH Un | nits) | RDL (pH Units) | |----------------|-----------|----------------|------------------|--------------|-------|----------------| | 8062913-01 | Well Head | рН | | 9.09 | HT | 1.00 | | Date Sampled: | 06/28/18 | Date Analyzed: | 06/29/18 | | QC Ba | tch: B017812 | | Date Received: | 06/29/18 | Method: | SM 4500-H B-2011 | | | | ### Conductivity | Lab# | Sample ID | Compound Name | | Result (μS/cm) | RDL (µS/cm) | |----------------|-----------|----------------|----------------|----------------|----------------| | 8062913-01 | Well Head | Conductivity | | 530 | 0.5 | | Date Sampled: | 06/28/18 | Date Analyzed: | 06/29/18 | QC | Batch; B017812 | | Date Received: | 06/29/18 | Method: | SM 2510 B-2011 | | | ### Anions | Lab# | Sample ID | Compound Name | | Result (mg/L) | RDL (mg/L) | |----------------|-----------|----------------|-----------|---------------|------------------| | 8062913-01 | Well Head | Chloride | | 20 | 1.0 | | | | Nitrate as N | | ND | 0.15 | | | | Sulfate as SO4 | | 2.6 | 0.50 | | Date Sampled: | 06/28/18 | Date Analyzed; | 06/29/18 | Q | C Batch: B017810 | | Date Received: | 06/29/18 | Method; | EPA 300.0 | | | ### **Total Dissolved Solids by EC** | Lab# | Sample ID | Compound Name | | Result (mg/L) | RDL (mg/L) | |----------------|-----------|------------------------|-----------|---------------|-------------------| | 8062913-01 | Well Head | Total Dissolved Solids | | 340 | 10 | | Date Sampled: | 06/28/18 | Date Analyzed: | 06/29/18 | (| QC Batch: B017786 | | Date Received: | 06/29/18 | Method: | EPA 120,1 | | | ### **Notes and Definitions** HT The recommended holding time prior to analysis for dissolved oxygen, pH and residual chlorine is 15 minutes. This analysis was performed outside the recommended 15 minute holding time. RDL Reporting Detection Limit ND Analyte NOT DETECTED at or above the reporting detection limit (RDL) mg/L milligrams per Liter ug/L micrograms per Liter PLEASE NOTE: The drinking water Maximum Contamination Limits (MCL) set by the California State Water Resource Control Board are as follows: Aluminum (1000 ug/L) Arsenic (10 ug/L) Bromate (0.010 mg/L) Iron (300 ug/L) Manganese (50 ug/L) Nitrate as N (10 mg/L) Nitrite as N (1.0 mg/L) Lead (15 ug/L) Copper (1300 ug/L) Total Coliform (< 1 MPN/100 mL - Most Probable Number per 100 milliliters) E. Coli (< 1 MPN/100 mL - Most Probable Number per 100 milliliters) Analytical Sciences P.O. Box 750336, Petaluma, CA 949750336 110 Liberty Street, Petaluma, CA 94952 (707) 769-3128 Fax (707) 769-8093 CLIENT INFORMATION # CHAIN OF CUSTO AKA AKA 30 20 CO Fonix Farms, MC Lab Project Number: Client's Project Number: Client's Project Number: WO# 36359 Temperature Received | ဂ္ဂ | Company Name: Les Petersen Drilling & Pump | tersen Dri | lling & Pu | mp | | | 1 |---------|--|----------------------|------------|--------------|-------|---------------|----------|---------|--|--|--|--------------|--|---------------------------------------|--|--------------|--------------|--------------|-----------|----------|---|---|----------|-----------|--------|-----------------| | | Address: 5434 Old Redwood HWY | d Redwood | 1WH | | | | | ĺ | | | | | | | | J | | | | | | | | | | | | | Santa F | Santa Rosa, CA 95403 | 95403 | | | | | 7 | URN | TURNAROUND TIME (check one) | Ø. | TIME | (che | ck o | ne) | | | | | | | | | | | | | | Contact: Linda Pool | ool | | | | | | San | Same Day | | | 72 | 72 Hours | | | ل | | | | | | | | | | | | | Phone #: 707-545-0246 | 5-0246 | | | | | | 48 | 48 Hours | | | 24 | 24 Hours | | | | | | | | • | | | | | • | | | Fax#. 707-573-9483 | 3-9483 | | | | | | | 5 Days | | | ا
ح | Normal | | ~ | | | | P | Page | - | | | 랓 | | - | | | e-mail: lespetersendrilling@comcast.net | sendrilling | @comcas | <u>t net</u> | | | | | | | | ĺ | | | | | | | | | | | | | | | | | • | | | | | <u></u> | | | | | | ≱ | ANALY: | YSIS | ltem
| Client Sample ID | Date
Sampled | Time | Matrix | Cont. | Presv.
Y/N | Bacteria | Arsenic | Nitrate | DOM#2 | | | Avi. | · · · · · · · · · · · · · · · · · · · | | | | | | | | δ | Comments | ਹੋ | :
: | Lab
Sample # | | uniki . | WELLHEAD | 82101 | といと | بخ | | | | | Ī. | $\overline{\times}$ | | ···· | | | | ļ | \vdash | - | ļ | | | | | | | DI | | N | | | | | | | | | <u> </u> | - | | | | | | | <u> `</u> | ╁ | ├- | | | | • | | | | | ယ | - | | | | | | | | | +- | | | | Γ | † | - | - | - | | _ | | | | | | | | * | | | | | | | | | | | | | | 1 | ╫ | | + | - | <u> </u> | | | | | | | | | O) | | | | | | | | | | | | | | | | | - | ╀- | ļ | | | | | | | | | 6 | | | | | | | | | T | | | | | | | | | ┼ | - | <u> </u> | | | | | | | | 7 | | | | | | | | | ┢ | | | | | | ╁ | | | - | - | <u> </u> | | | | | | | | 8 | | | | | | | | | | | | | | | | ╁ | \vdash | | _ | | | | | | | | | 6 | | | | | | | | | | | | | | | | <u> </u> | ╀ | - | <u> </u> | | | | | | | | | 01 | | | | | | | | | | <u> </u> | | _ | | | <u> </u> | | - | <u> </u> | | <u></u> | | | | | L | Sampled By: しってつ ノコマンマロン Received By Signature 129/18 1215 SIGNATURES Date 180 Report Date: July 09, 2018 ### **Laboratory Report** Linda Pool Les Petersen Drilling 5434 Old Redwood Highway Santa Rosa, CA 95403 Project Name: 6096 Bodega Ave. - Fenix Farms Fenix Farms Lab Project Number: 8070609 This 3 page report of analytical data has been reviewed and approved for release. Michele Peters Laboratory Director P.O. Box 750336 Petaluma, CA 94975-0336 Telephone: (707) 769-3128 110 Liberty Street Petaluma, CA 94952 ### Total Coliform & E. Coli | Lab# | Sample ID | Compound Name | | Result (MPN/1 | 00 mL) | RDL (MPN/100 mL) | |---------------|----------------------|---------------------------|---------------------------|---------------|----------|------------------| | 8070609-01 | Well | Total Coliform
E. Coli | | <1
<1 | QT
QT | 1 | | Date Sampled: | 07/06/18
07/06/18 | Date Analyzed:
Method: | 07/07/18
SM 9223 B-200 |)4 | QC B | atch: B017827 | ### **Notes and Definitions** QT The bacterial test utilized is a quantitative test. A result of less than 1 (<1) is indicating bacteria are "absent" in 100 milliliters of sample water. RDL Reporting Detection Limit ND Analyte NOT DETECTED at or above the reporting detection limit (RDL) mg/L milligrams per Liter ug/L micrograms per Liter PLEASE NOTE: The drinking water Maximum Contamination Limits (MCL) set by the California State Water Resource Control Board are as follows: Aluminum (1000 ug/L) Arsenic (10 ug/L) Bromate (0.010 mg/L) Iron (300 ug/L) Manganese (50 ug/L) Nitrate as N (10 mg/L) Nitrite as N (1.0 mg/L) Lead (15 ug/L) Copper (1300 ug/L) Total Coliform (< 1 MPN/100 mL - Most Probable Number per 100 milliliters) E. Coli (< 1 MPN/100 mL - Most Probable Number per 100 milliliters) Page 3 of 3 Lab Project#: 8070609 CA Lab Accreditation #: 2303 Analytical Sciences P.O. Box 750336, Petaluma, CA 949750336 110 Liberty Street, Petaluma, CA 94952 (707) 769-3128 Fax (707) 769-8093 CLIENT INFORMATION # CHAIN OF CUSI しのつのこ Client's Project Number: Lab Project Number: 8 Client's Project Name: (a096) TROIX FORXS Boolega 41/0 925亿图事 | Santa Rosa, CA 98403 TURNAROUND TIME (check one) TURNAROUND TIME (check one) TURNAROUND TIME (check one) Same Day | | | 10 | G. | 000 | 7 | - - | D | (J1 | 4 | ω | 2 | | Item | | | | | | | | |---|---|---|----------|----------|-----|---|-----|---|---|----------|--------------|--------------|--------|------------------|-------------------------|-------------------------|----------------|------------------|-------------------|---|--| | TURNAROUND TIME (check one) Toporature Received | | | | | | | | | | | | | Well | Client Sample ID | | e-mail: <u>lespeter</u> | Fax #: 707-573 | Phone #: 707-545 | Contact: Linda Po | Santa F | Address: 5434 Old Redwood HWY | | TURNAROUND TIME (check one) Toporature Received | | | | | | | | | | | | | 7/6/18 | Date
Sampled | | rsendrilling | 3-9483 | 5-0246 | ool | cosa, CA | d Redwood | | Turnyaraound Time (check one) Temperature Received | | | | | | | | | | | | | 10:35 | Time | | @comcas | | | | 95403 | AMH | | TURNAROUND TIME (check one) Temperature Received | | | | | | | | | | | | | 3 | Matrix | | <u>Lnet</u> | | | | | | | Same Day 72 Hours 72 Hours 72 Hours 72 Hours 72 Hours 75 Days Normal 72 Hours 75 Days Normal 75 Comments 75 Days 75 Days 76 Days 77 Hours 76 Days 77 Hours 77 Days | | \Rightarrow | | | | | | | | | | | | Cont. | | | | | | | | | TURNAROUND TIME (check one) Same Day | | *************************************** | | | | | | | | | | | | Presv.
Y/N | | | | | | | | | InD TIME (check one) 72 Hours 24 Hours Normal \times Page for of Comments Comments | ٤ | | | | | | | | | | | | × | Bacteria | | | | | | | - | | InD TIME (check one) 72 Hours 24 Hours Normal \times Page for of Comments Comments | 2 | Š | | | | | | | | _ | | | | | _ | | 51 | 48 Ho | Same l | TU! | | | InD TIME (check one) 72 Hours 24 Hours Normal \times Page for of Comments Comments | 9 | | | | _ | | | , | | | ļ | | | Nitrate | - | | ays | SILK | Day
 | WAR | | | Page of of | ľ | | \vdash | <u> </u> | - | _ | | | | | | | - | | $- \parallel \parallel$ | | | | | GNUC | : | | Page of of | | | | | | _ | | | | | | \vdash | | | - A | | ا
ح | 1
24 | - 72 h | TIME | | | Page of of | ŀ | | | 1 | + | + | 1 | | | | - | | | | ALYS | | formal | Hours | ours | (chec | | | Page of of | | | | | | | |
 | | | | | | is | | \mathbf{k} | | | × on | | | fura Reosived Comments | fura Reosived Comments | | | ļ | | | | | | | ļ | | | | | | | | | | | | | fura Reosived Comments | | | ļ | _ | _ | _ | | , , <u>, , , , , , , , , , , , , , , , , </u> | | <u> </u> | _ | | - | | _ | | | | ĺ | | | | fura Reosived Comments | | | _ | | _ | | _ | | - | | - | - | _ | | _ | | Pag | | | ě | j | | of of | | - | ļ | | _ | | | | <u> </u> | - | - | + | | <u> </u> | | i | je
 | | | 6- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- | | | Lab
Sample # | | | | | | | | | | | | | | Comments | | | of | ••• | | o Nocesive | The state of s | | | | | | | | | | | | | | | 0 | Lab
Sample # | | | | - | | | | Relinquished By Sampled By: Date 3 ime Signature Received By: 220 Time # APPENDIX G RADIUS OF INFLUENCE GRAPH Radius of Influence 6095 Bodega Avener Petaluma, CA APN: 022-200-002